Skip to main content
Log in

Integrating pharmacogenetics and therapeutic drug monitoring: optimal dosing of imatinib as a case-example

  • Pharmacogenetics
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

To illustrate the interface of pharmacogenetics and therapeutic drug monitoring and to estimate target blood level for imatinib in the treatment of chronic myelogenous leukemia

Methods

A literature review to provide the evidence and necessary data to support the case for the interface, and quantitative analysis of the data to estimate the target blood level for imatinib using receiver operating curve (ROC; signal detection theory) analysis.

Results and discussion

One study estimated the optimum target level of imatinib in chronic myelogenous leukaemia as 1002 ng/mL (1.70 µM) through ROC analysis. Using individual-patient level data reported in another study and the same methodology, we estimated the target level as 0.95 µM. This is consistent with the results of other observational studies where dose–response was not the primary research objective. The available evidence suggests considerable inter-individual variability in dose–blood level response. In addition to the pharmacogenetics of metabolic enzymes and transporters, genetic mutations in genes participating in the signalling pathways may also account for the wide inter-individual variability in dose–blood level and dose–clinical response relationships.

Conclusion

A single-dose regimen for all pharmacogenetically eligible patients is not the optimum strategy for prescribing imatinib to patients with chronic myelogenous leukaemia. We suggest that therapeutic drug monitoring aimed at ensuring a trough target level of 1 µM would reduce the incidence of pseudo-resistance and hence personalize treatment and optimise response to imatinib. Persistent resistance can then be probed further for other causes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schwartz R (2002) A molecular star in the wars against cancer. N Engl J Med 347(7):462–463

    Article  PubMed  Google Scholar 

  2. Demetri GDvMM, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. A molecular star in the wars against cancer. N Engl J Med 347:472–480

    Article  CAS  PubMed  Google Scholar 

  3. Wardelmann E, Thomas N, Merkelbach-Bruse S, Pauls K, Speidel N, Buttner R et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol 6(4):249–251

    Article  CAS  PubMed  Google Scholar 

  4. Kantarjian HM, Talpaz M, O'Brien S, Giles F, Garcia-Manero G, Faderl S et al (2003) Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia. Blood 101(2):473–475

    Article  CAS  PubMed  Google Scholar 

  5. Kantarjian HM, Larson RA, Guilhot F, O'Brien SG, Mone M, Rudoltz M et al (2009) Efficacy of imatinib dose escalation in patients with chronic myeloid leukemia in chronic phase. Cancer 115(3):551–560

    Article  CAS  PubMed  Google Scholar 

  6. Jabbour E, Kantarjian HM, Jones D, Shan J, O'Brien S, Reddy N et al (2009) Imatinib mesylate dose escalation is associated with durable responses in patients with chronic myeloid leukemia after cytogenetic failure on standard-dose imatinib therapy. Blood 113(10):2154–2160

    Article  CAS  PubMed  Google Scholar 

  7. Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104(12):3739–3745

    Article  CAS  PubMed  Google Scholar 

  8. Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA et al (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109(8):3496–3499

    Article  CAS  PubMed  Google Scholar 

  9. Singh N, Kumar L, Meena R, Velpandian T (2009) Drug monitoring of imatinib levels in patients undergoing therapy for chronic myeloid leukaemia: comparing plasma levels of responders and non-responders. Eur J Clin Pharmacol 65(6):545–549

    Article  CAS  PubMed  Google Scholar 

  10. Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, Krahnke T et al (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111(8):4022–4028

    Article  CAS  PubMed  Google Scholar 

  11. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al (2003) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 348(11):994–1004

    Article  PubMed  Google Scholar 

  12. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417

    Article  CAS  PubMed  Google Scholar 

  13. Green DM, Swets JA (1966) Signal detection theory and psychophysics. Peninsula Publ, Los Altos

    Google Scholar 

  14. Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F et al (2006) Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 108(6):1809–1820

    Article  CAS  PubMed  Google Scholar 

  15. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344(14):1052–1056

    Article  CAS  PubMed  Google Scholar 

  16. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C et al (2002) Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med 346(9):645–652

    Article  CAS  PubMed  Google Scholar 

  17. Kantarjian HM, Talpaz M, O'Brien S, Smith TL, Giles FJ, Faderl S et al (2002) Imatinib mesylate for Philadelphia chromosome-positive, chronic-phase myeloid leukemia after failure of interferon-alpha: follow-up results. Clin Cancer Res 8(7):2177–2187

    CAS  PubMed  Google Scholar 

  18. Baccarani M, Rosti G, Castagnetti F, Haznedaroglu I, Porkka K, Abruzzese E et al (2009) Comparison of imatinib 400 mg and 800 mg daily in the front-line treatment of high-risk, Philadelphia-positive chronic myeloid leukemia: a European LeukemiaNet study. Blood 113(19):4497–4504

    Article  CAS  PubMed  Google Scholar 

  19. Science and Technology Committee (2009) Genomic medicine, vol 1. House of Lords, London

    Google Scholar 

  20. Mauro MJ (2009) Tailoring tyrosine kinase inhibitor therapy in chronic myeloid leukemia. Cancer Control 16(2):108–121

    PubMed  Google Scholar 

  21. Pollack A (2009) As pills treat cancer, insurance lags behind. New York Times 2009, April 15th:A1

  22. Steinbrook R (2008) Saying no isn't NICE—the travails of Britain's National Institute for Health and Clinical Excellence. N Engl J Med 359(19):1977–1981

    Article  CAS  PubMed  Google Scholar 

  23. Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, Siminovitch K et al (2009) Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 15(14):4750–4758

    Article  CAS  PubMed  Google Scholar 

  24. Quintas-Cardama A, Kantarjian HM, Cortes JE (2009) Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Control 16(2):122–131

    PubMed  Google Scholar 

  25. Volpe G, Panuzzo C, Ulisciani S, Cilloni D (2009) Imatinib resistance in CML. Cancer Lett 274(1):1–9

    Article  CAS  PubMed  Google Scholar 

  26. Garg RJ, Kantarjian H, O'Brien S, Quintas-Cardama A, Faderl S, Estrov Z et al (2009) The use of nilotinib or dasatinib after failure to 2 prior tyrosine kinase inhibitors: long-term follow-up. Blood 114(20):4361–4368

    Article  CAS  PubMed  Google Scholar 

  27. Quintas-Cardama A, Cortes J (2009) Chronic myeloid leukemia in the tyrosine kinase inhibitor era: what is the best therapy? Curr Oncol Rep 11(5):337–345

    Article  PubMed  Google Scholar 

  28. Jabbour E, Cortes J, Kantarjian H (2009) Treatment selection after imatinib resistance in chronic myeloid leukemia. Target Oncol 4(1):3–10

    Article  PubMed  Google Scholar 

  29. Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44(9):879–894

    Article  CAS  PubMed  Google Scholar 

  30. Gardner ER, Burger H, van Schaik RH, van Oosterom AT, de Bruijn EA, Guetens G et al (2006) Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharmacol Ther 80(2):192–201

    Article  CAS  PubMed  Google Scholar 

  31. Li-Wan-Po A, Farndon P, Cooley C, Lithgow J (2010) When is a genetic test suitable for prime time? predicting the risk of prostate cancer as a case-example. Public Health Genomics 13:55–62. doi:10.1159/000218710

    Google Scholar 

  32. Li-Wan-Po A (2010) Pharmacogenetics of CYP2C19: functional and clinical implications of a new variant CYP2C19*17. Br J Clin Pharmacol. doi:10.1111/j.1365-2125.2009.03578.x

  33. Meyer zu Schwabedissen HE, Kim RB (2009) Hepatic OATP1B transporters and nuclear receptors PXR and CAR: interplay, regulation of drug disposition genes, and single nucleotide polymorphisms. Mol Pharm 6(6):1644–1661

    Article  CAS  PubMed  Google Scholar 

  34. Willson TM, Kliewer SA (2002) PXR, CAR and drug metabolism. Nat Rev Drug Discov 1(4):259–266

    Article  CAS  PubMed  Google Scholar 

  35. Burk O, Wojnowski L (2004) Cytochrome P450 3A and their regulation. Naunyn Schmiedebergs Arch Pharmacol 369(1):105–124

    Article  CAS  PubMed  Google Scholar 

  36. Takagi S, Nakajima M, Mohri T, Yokoi T (2008) Post-transcriptional regulation of human pregnane X receptor by micro-RNA affects the expression of cytochrome P450 3A4. J Biol Chem 283(15):9674–9680

    Article  CAS  PubMed  Google Scholar 

  37. Mishra PJ, Merlino G (2009) MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest 119(8):2119–2123

    CAS  PubMed  Google Scholar 

  38. Benet LZ (2009) The drug transporter-metabolism alliance: uncovering and defining the interplay. Mol Pharm 6(6):1631–1643

    Article  CAS  PubMed  Google Scholar 

  39. Gurney H, Wong M, Balleine RL, Rivory LP, McLachlan AJ, Hoskins JM et al (2007) Imatinib disposition and ABCB1 (MDR1, P-glycoprotein) genotype. Clin Pharmacol Ther 82(1):33–40

    Article  CAS  PubMed  Google Scholar 

  40. Petain A, Kattygnarath D, Azard J, Chatelut E, Delbaldo C, Geoerger B et al (2008) Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 14(21):7102–7109

    Article  CAS  PubMed  Google Scholar 

  41. Dressman MA, Malinowski R, McLean LA, Gathmann I, Capdeville R, Hensley M et al (2004) Correlation of major cytogenetic response with a pharmacogenetic marker in chronic myeloid leukemia patients treated with imatinib (STI571). Clin Cancer Res 10(7):2265–2271

    Article  CAS  PubMed  Google Scholar 

  42. McLean LA, Gathmann I, Capdeville R, Polymeropoulos MH, Dressman M (2004) Pharmacogenomic analysis of cytogenetic response in chronic myeloid leukemia patients treated with imatinib. Clin Cancer Res 10(1 Pt 1):155–165

    Article  CAS  PubMed  Google Scholar 

  43. Bolton AE, Peng B, Hubert M, Krebs-Brown A, Capdeville R, Keller U et al (2004) Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer Chemother Pharmacol 53(2):102–106

    Article  CAS  PubMed  Google Scholar 

  44. O'Brien SG, Meinhardt P, Bond E, Beck J, Peng B, Dutreix C et al (2003) Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 89(10):1855–1859

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Li-Wan-Po.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li-Wan-Po, A., Farndon, P., Craddock, C. et al. Integrating pharmacogenetics and therapeutic drug monitoring: optimal dosing of imatinib as a case-example. Eur J Clin Pharmacol 66, 369–374 (2010). https://doi.org/10.1007/s00228-009-0779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-009-0779-4

Keywords

Navigation