Skip to main content

Advertisement

Log in

Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Treatment failures following vancomycin therapy in patients with methicillin-resistant Staphylococcus aureus infections have led to the utilization of higher doses of this antibiotic to achieve the trough concentrations of 10–20 μg/mL recommended by the Infectious Diseases Society of America clinical practice guideline. However, many questions remain on the safety of such high doses of vancomycin, specifically their nephrotoxic effects. In this review, we have collected available evidence on the nephrotoxicity of vancomycin, particularly in terms of its mechanism, incidence, predisposing factors and special target populations.

Method

The data were collected by searching Scopus, PubMed, Medline, and Cochrane database systematic reviews. The key words used as search terms were “vancomycin”, “nephrotoxicity”, “renal failure”, “renal damage”, “risk factors”, “infants”, “children”, “adult”, “elderly” and “pregnancy”. We have included all relevant animal and human studies up to the date of publication.

Results and conclusion

Vancomycin-induced renal toxicity was reported in 10–20 % and 30–40 % of patients following conventional and high doses of vancomycin therapy, respectively .The most probable mechanism for its nephrotoxicity can be at least partially attributable to an increased production of reactive oxygen species and oxidative stress. There are a number of different risk factors which could accelerate or potentiate the occurrence of vancomycin-induced nephrotoxicity, with the most documented risk factors being high trough vancomycin level (especially >20 mg/L) or doses (>4 g/day), concomitant treatment with nephrotoxic agents, prolonged therapy (even more than 7 days), and admittance to an intensive care unit (especially prolonged stay). It is necessary to carry out more studies, especially those focused on the association between nephrotoxicity and high trough levels of vancomycin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hodoshima N, Masuda S, Inui K (2007) Decreased renal accumulation and toxicity of a new VCM formulation in rats with chronic renal failure. Drug Metab Pharmacokinet 22:419–427

    Article  PubMed  CAS  Google Scholar 

  2. Bailie GR, Neal D (1998) Vancomycin ototoxicity and nephrotoxicity, a review. Med Toxicol 3:376–386

    Google Scholar 

  3. Lodise TP, Patel N, Lomaestro BM, Rodvold KA, Drusano GL (2009) Relationship between initial vancomycin concentration-time profile and nephrotoxicity. Clin Infect Dis 49:507–514

    Article  PubMed  CAS  Google Scholar 

  4. Lodise TP, Lomaestro B, Graves J, Drusano GL (2008) Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother 52:1330–1336

    Article  PubMed  CAS  Google Scholar 

  5. Elting LS, Rubenstein EB, Kurtin D (1998) Mississippi mud in the 1990s:risks and outcomes of vancomycin-associated toxicity in general oncology practice. Cancer 83:2597–2607

    Article  PubMed  CAS  Google Scholar 

  6. Newton P (2004) The role of monitoring serum vancomycin levels. Phatol 2:1–2

    Google Scholar 

  7. Ingram PR, Lye DC, Tambyah PA, Goh WP, Tam VH, Da F (2008) Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. Antimicrob Agents Chemother 62:168–171

    Article  CAS  Google Scholar 

  8. Moellering RC (2006) Vancomycin: a 50-year reassessment. Clin Infect Dis 1 S:3–4

    Article  Google Scholar 

  9. Levine DP (2006) Vancomycin: a history. Clin Infect Dis 42S1:5–12

    Article  Google Scholar 

  10. Chow AW, Azar RM (1994) Glycopeptides and nephrotoxicity. Intensive Care Med 20S:23–29

    Article  Google Scholar 

  11. Arbeit RD, Maki D, Tally FP (2004) Campanaro E, Eisenstein BI. The safety and efficacy of daptomycin for the treatment of complicated skin and skin-structure infections. Clin Infect Dis 38:1673–1681

    Article  PubMed  CAS  Google Scholar 

  12. Wilcox MH, Tack KJ, Bouza E (2009) Complicated skin and skin-structure infections and catheter related bloodstream infections: noninferiority of linezolid in a phase 3 study. Clin Infect Dis 48:203–212

    Article  PubMed  CAS  Google Scholar 

  13. Pritchard L, Baker C, Leggett J, Sehdev P, Brown A, Bayley KB (2010) Increasing vancomycin serum trough concentrations and incidence of nephrotoxicity. Am J Med 123:1143–1149

    Article  PubMed  CAS  Google Scholar 

  14. Huanga LY, Wanga CY, Jangb TN, Yeh HL (2007) Nephrotoxicity of vancomycin and teicoplanin alone and in combination with an aminoglycoside. Taiwan Pharm J 59:1–8

    Google Scholar 

  15. Zimmermann AE, Katona BG, Plaisance KI (1995) Association of vancomycin serum concentrations with outcomes in patients with grampositive bacteremia. Pharmacotherapy 15:85–91

    PubMed  CAS  Google Scholar 

  16. Toyoguchi T, Takahashi S, Hosoya J, Nakagawa Y, Watanabe H (1997) Nephrotoxicity of vancomycin and drug interaction study with cilastatin in rabbits. Antimicrob Agents Chemother 41:1985–1990

    PubMed  CAS  Google Scholar 

  17. Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Ogino T, Inoue M, Okada S, Kinoshita H (2003) Targeting superoxide dismutase to renal proximal tubule cells attenuates vancomycin-induced nephrotoxicity in rats. Free Radic Res 37:272–279

    Article  Google Scholar 

  18. Oktema F, Arslan FK, Ozguner F, Candir O, Yilmaz HR, Ciris M et al (2005) In vivo evidences suggesting the role of oxidative stress in pathogenesis of vancomycin-induced nephrotoxicity: protection by erdosteine. Toxicology 215:227–233

    Article  Google Scholar 

  19. King DW, Smith MA (2004) Proliferative responses observed following vancomycin treatment in renal proximal tubule epithelial cells. Toxicology 18:797–803

    CAS  Google Scholar 

  20. Celik I, Cihangiroglu M, Ilhan N, Akpolat N, Akbulut HH (2005) Protective effects of different antioxidants and amrinone on vancomycin-induced nephrotoxicity. basic. Clin Pharmacol Toxicol 97:325–332

    Article  CAS  Google Scholar 

  21. Cetin H, Olgar S, Oktem F (2007) Novel evidence suggesting an antioxidant property for erythropoietin on vancomycin-induced nephrotoxicity in a rat model. Clin Exp Pharmacol Physiol 34:1181–1185

    PubMed  CAS  Google Scholar 

  22. Hodoshima N, Nakano Y, Zumi M (2004) Protective effect of inactive ingredients against nephrotoxicity of vancomycin hydrochloride in rats. Drugs Metab Pharmacokinet 19:68–75

    Article  CAS  Google Scholar 

  23. Ladino M, Alex M, Schulman IH (2008) Acute and reversible vancomycin nephrotoxicity: a case series. J Nephrol Ren Transplant 3:4–10

    Google Scholar 

  24. Nishino Y, Takemura S, Minamiyama Y, Hirohashi K, Tanaka H, Inoue M et al (2002) Inhibition of vancomycin-induced nephrotoxicity by targeting superoxide dismutase to renal proximal tubule cells in the rat. Redox Rep 7:317–319

    Article  PubMed  CAS  Google Scholar 

  25. Abraham NG, Asija A, Drummond G, Peterson S (2007) Heme oxygenase-1 gene therapy: recent advances and therapeutic applications. Curr Gene Ther 7:89–108

    Article  PubMed  CAS  Google Scholar 

  26. Scandalios JG (2005) Oxidative stress: Molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    Article  PubMed  CAS  Google Scholar 

  27. Hazlewood KA, Brouse SD, Pitcher WD, Hall RG (2010) Vancomycin-associated nephrotoxicity: grave concern or death by character assassination? Am J Med 123:182–193

    Article  PubMed  CAS  Google Scholar 

  28. Lee W, Kim RB (2004) Transporters and renal drug elimination. Annu Rev Pharmacol Toxicol 44:137–166

    Article  PubMed  CAS  Google Scholar 

  29. Dieterich C, Puey A, Lyn S, Swezey R, Furimsky A, Fairchild D et al (2009) Gene expression analysis reveals new possible mechanisms of vancomycin-induced nephrotoxicity and identifies gene markers candidates. Toxicol Sci 107:258–269

    Article  PubMed  CAS  Google Scholar 

  30. Fanos V, Cataldi L (2001) Renal transport of antibiotics and nephrotoxicity: a review. J Chemother 13:461–472

    PubMed  CAS  Google Scholar 

  31. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P (2004) Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) group. Crit Care 8:R204–R212

    Article  PubMed  Google Scholar 

  32. Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG et al (2007) Acute kidney injury network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11:R31

    Article  PubMed  Google Scholar 

  33. Minejima E, Choi J, Beringer P, Lou M, Tse E, Wong-Beringer A (2011) Applying new diagnostic criteria for acute kidney injury to facilitate early identification of nephrotoxicity in vancomycin-treated patients. Antimicrob Agents Chemother 55:3278–3283

    Article  PubMed  CAS  Google Scholar 

  34. Shen WC, Chiang YC, Chen HY, Chen TH, Yu FL, Tang CH et al (2011) Nephrotoxicity of vancomycin in patients with methicillin-resistant staphylococcus aureus bacteremia. Nephrology 10:1797–1803

    Google Scholar 

  35. Waring WS, Moonie A (2011) Earlier recognition of nephrotoxicity using novel biomarkers of acute kidney injury. Clin Toxicol 49:720–728

    Article  CAS  Google Scholar 

  36. Chawla LS, Kellum JA (2012) Acute kidney injury in 2011: biomarkers are transforming our understanding of AKI. Nat Rev Nephrol 17:68–70

    Article  Google Scholar 

  37. Naghibi B, Ghafghazi T, Hajhashemi V, Talebi A (2007) Vancomycin-induced nephrotoxicity in rats: is enzyme elevation a consistent finding in tubular injury? J Nephrol 20:482–488

    PubMed  CAS  Google Scholar 

  38. Tanaka A, Aiba T, Otsuka T, Suemaru K, Nishimiya T, Inoue T et al (2010) Population pharmacokinetic analysis of vancomycin using serum cystatin C as a marker of renal function. Antimicrob Agents Chemother 54:778–782

    Article  PubMed  CAS  Google Scholar 

  39. Kalil AC (2008) Linezolid versus vancomycin or teicoplanin for nosocomial pneumonia: a meta-analysis. In: 48th Interscience Conf Antimicrobial Agents and Chemotherapy (abstract) Washington, DC

  40. Vriese A, Vandecasteele SJ, De AS (2010) Recent changes in vancomycin use in renal failure. Kidney Int 77:760–764

    Article  PubMed  Google Scholar 

  41. Bhatt-Mehta V, Schumacher RE, Faix RG, Leady M, Brenner T (1999) Lack of vancomycin-associated nephrotoxicity in newborn infants: a case-control study. Pediatrics 103:48–52

    Google Scholar 

  42. Downs NJ (1989) Mild nephrotoxicity associated with vancomycin use. Arch Intern Med 149:1777–1781

    Article  PubMed  CAS  Google Scholar 

  43. Hidayat LK, Hsu DI, Quist R, Shriner KA, Wong-Beringer A (2006) High-dose vancomycin therapy for methicillin-resistant staphylococcus aureus infections. Arch Intern Med 166:2138–2144

    Article  PubMed  Google Scholar 

  44. Marre R, Schulz E, Anders T, Sack K (1984) Renal tolerance and pharmacokinetics of vancomycin in rats. J Antimicrob Chemother 14:253–260

    Article  PubMed  CAS  Google Scholar 

  45. Fauconneau B, De Lemos E, Pariat C, Bouquet S, Courtois P, Piriou A (1992) Chrononephrotoxicity in rat of a vancomycin and gentamicin combination. Pharmacol Toxicol 71:31–36

    Article  PubMed  CAS  Google Scholar 

  46. Fauconneau B, Pariat C, Bouquet S, Piriou A, Ingrand P, Courtois P (1993) A comparative study of enzymuria, in the rat, of the drug combinations amikacin/vancomycin and amikacin/teicoplanin. Ren Fail 15:469–473

    Article  PubMed  CAS  Google Scholar 

  47. Fauconneau B, Favrelière S, Pariat C, Génévrier A, Courtois P, Piriou A et al (1997) Nephrotoxicity of gentamicin and vancomycin given alone and in combination as determined by enzymuria and cortical antibiotic levels in rats. Ren Fail 19:15–22

    Article  PubMed  CAS  Google Scholar 

  48. Wold JS, Turnipseed SA (1981) Toxicicology of vancomycin in laboratory animals. Rev Infect Dis 3:S224–S229

    PubMed  Google Scholar 

  49. Farber BF, Moellering RC Jr (1983) Retrospective study of the toxicity of preparations of vancomycin from 1974 to 1981. Antimicrob Agents Chemother 23:138–141

    Article  PubMed  CAS  Google Scholar 

  50. Marre R, Schulz E, Hedtke D, Sack K (1985) Influence of fosfomycin and tobramycin on vancomycin-induced nephrotoxicity. Infect 13:190–192

    Article  CAS  Google Scholar 

  51. Toyoguchi T, Nakagawa Y (1996) Nephrotoxicity and drug interaction of vancomycin. Nippon Yakurigaku Zasshi 107:225–235

    Article  PubMed  CAS  Google Scholar 

  52. Sorrell TC, Collignon PJ (1985) A prospective study of adverse reactions associated with vancomycin therapy. J Antimicrob Chemother 16:235–241

    Article  PubMed  CAS  Google Scholar 

  53. Malacarne P, Bergamasco S, Donadio C (2006) Nephrotoxicity due to combination antibiotic therapy with vancomycin and aminoglycosides in septic critically ill patients. Chemotherapy 52:178–184

    Article  PubMed  CAS  Google Scholar 

  54. Goetz MB, Sayers J (1993) Nephrotoxicity of vancomycin and aminoglycoside therapy separately and in combination. J Antimicrob Chemother 32:325–334

    Article  PubMed  CAS  Google Scholar 

  55. Krcméry VJ, Fuchsberger P, Gocár M, Salát T, Bodnárová J, Sobota R et al (1991) Nephrotoxicity of aminoglycosides, polypeptides and cephalosporins in cancer patients. Chemotherapy 37:287–291

    Article  PubMed  Google Scholar 

  56. Vance-Bryan K, Rotschafer JC, Gilliland SS, Rodvold KA, Fitzgerald CM, Guay DR (1994) A comparative assessment of vancomycin-associated nephrotoxicity in the young versus the elderly hospitalized patient. 1994. J Antimicrob Chemother 33:811–821

    Article  PubMed  CAS  Google Scholar 

  57. Psevdos GJ, Gonzalez E, Sharp V (2009) Acute renal failure in patients with AIDS on tenofovir while receiving prolonged vancomycin course for osteomyelitis. AIDS Read 19:245–248

    PubMed  Google Scholar 

  58. Mellor JA, Kingdom J, Cafferkey M, Keane CT (1985) Vancomycin toxicity: a prospective study. J Antimicrob Chemother 15:773–780

    Article  PubMed  CAS  Google Scholar 

  59. Goren MP, Baker DK, Shenep JL (1989) Vancomycin does not enhance amikacin-induced tubular nephrotoxicity in children. Pediatr Infect Dis J 8:278–282

    PubMed  CAS  Google Scholar 

  60. Kralovicová K, Spanik S, Halko J, Netriova J, Studena-Mrazova M, Novotny J et al (1997) Do vancomycin serum levels predict failures of vancomycin therapy or nephrotoxicity in cancer patients? J Chemother 9:420–426

    PubMed  Google Scholar 

  61. Cimino MA, Rotstein C, Slaughter RL (1987) Emrich LJ. Relationship of serum antibiotic concentrations to nephrotoxicity in cancer patients receiving concurrent aminoglycoside and vancomycin therapy. Am J Med 83:1091–1097

    Article  PubMed  CAS  Google Scholar 

  62. Baddour LM, Wilson WR, Bayer AS (2005) Infective endocarditis: diagnosis, antimicrobial therapy. Circulation 111:394–434

    Article  Google Scholar 

  63. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcareassociated. Am J Respir Crit Care Med 2005 171:388–416

    Google Scholar 

  64. Rybak M, Lomaestro B, Rotschafer JC (2009) Therapeutic monitoring of vancomycin in adult patients:a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66:82–98

    Article  PubMed  CAS  Google Scholar 

  65. Fagon J, Patrick H, Haas DW (2000) Treatment of Gram-positive nosocomial pneumonia. Prospective randomized comparison of quinupristin/dalfopristin versus vancomycin. Nosocomial Pneumonia Group. Am J Respir Crit Care Med 161:753–762

    PubMed  CAS  Google Scholar 

  66. Rubinstein E, Cammarata S, Oliphant T, Wunderink R (2001) Linezolid (PNU-100766) versus vancomycin in the treatment of hospitalized patients with nosocomial pneumonia: a randomized, double-blind, multi-center study. Clin Infect Dis 32:402–412

    Article  PubMed  CAS  Google Scholar 

  67. Eng RH, Wynn L, Smith SM, Tecson-Tumang F (1989) Effect of intravenous vancomycin on renal function. Chemotherapy 35:320–325

    Article  PubMed  CAS  Google Scholar 

  68. Hermsen ED, Hanson M, Sankaranarayanan J, Stoner JA, Florescu MC, Rupp ME (2010) Clinical outcomes and nephrotoxicity associated with vancomycin trough concentrations during treatment of deep-seated infections. Expert Opin Drug Saf 9:9–14

    Article  PubMed  CAS  Google Scholar 

  69. Colares VS, Oliveira RB, Abdulkader R (2006) Nephrotoxicity of vancomycin in patients with normal serum creatinine. Nephrol Dial Transplant 21:3608

    Article  PubMed  Google Scholar 

  70. McKamy S, Hernandez E, Jahng M, Moriwaki T, Deveikis A, Le J (2011) Incidence and risk factors influencing the development of vancomycin nephrotoxicity in children. J Pediatr 158:422–426

    Article  PubMed  CAS  Google Scholar 

  71. Wan Y (2009) Link between initial vancomycin concentration-time profile and nephrotoxicity in hospitalised patients. Clin Infect Dis 49:507–514

    Article  Google Scholar 

  72. Wong-Beringer A, Joo J, Tse E, Beringer P (2011) Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents 37:95–101

    Article  PubMed  CAS  Google Scholar 

  73. Housman ST, Kopcza K, Cross J, Garb J, Skiest D (2010) Incidence and risk factors of vancomycin-induced nephrotoxicity (VIN) in adult, non-intensive care unit patients receiving therapy for 48 hours. 48th Annual Meeting of Infectious Diseases Society of America (IDSA), Vancouver, BC, Canada, 2010. Abstract No 291. Available online at: http://idsa.confex.com/idsa/2010/webprogram/Paper4373.html

  74. Prabaker KK, Tran TP, Pratummas T, Goetz MB, Graber CJ (2012) Elevated vancomycin trough is not associated with nephrotoxicity among inpatient veterans. J Hosp Med 7:91–97

    Article  PubMed  Google Scholar 

  75. Moffett BS, Kim S, Edwards M (2010) Vancomycin nephrotoxicity may be overstated. J Pediatr 158:865

    Google Scholar 

  76. Bosso JA, Nappi J, Rudisill C, Wellein M, Bookstaver PB, Swindler J et al (2011) Relationship between vancomycin trough concentrations and nephrotoxicity: a prospective multicenter trial. Antimicrob Agents Chemother 55s:5475–5479

    Article  Google Scholar 

  77. Gasparovic GV (2009) Vancomycin nephrotoxicity in ICU and risk factors for acute renal failure. 22nd European Society of Intensive Care Medicine (ESICM) Annual Congress, Vienna, Austria, 2009. Eletronic Poster (No. 1037). Available online at: http://poster-consultation.esicm.org/ModuleConsultationPoster/posterDetail.aspx?intIdPoster=406

  78. Guest JF, Roberts G, Baguley J, Palazzo M (2000) The cost associated with managing nephrotoxicity among vancomycin-treated patients in an intensive care unit. Br J Intens Care 3:78–86

    Google Scholar 

  79. Cano EL, Haque NZ, Welch VL, Cely CM, Peyrani P, Scerpella EG et al (2012) Incidence of nephrotoxicity and association with vancomycin use in intensive care unit patients with pneumonia: retrospective analysis of the IMPACT-HAP database. Clin Ther 34:149–157

    Article  PubMed  CAS  Google Scholar 

  80. Jelassi ML, Benlmouden A, Lefeuvre S, Mainardi JL, Billaud EM (2011) Level of evidence for therapeutic drug monitoring of vancomycin. Therapie 66:29–37

    Article  PubMed  Google Scholar 

  81. Hutschala D, Kinstner C, Skhirdladze K, Thalhammer F, Muller M, Tschernko E (2009) Influence of vancomycin on renal function in critically ill patients after cardiac surgery. Crit Care Med 111:356–365

    CAS  Google Scholar 

  82. Jeurissena A, Sluyts I, Rutsaert R (2011) A higher dose of vancomycin in continuous infusion is needed in critically ill patients. Int J Antimicrob Agents 37:75–77

    Article  Google Scholar 

  83. Cohen E, Dadashev A, Drucker M, Samra Z, Rubinstein E, Garty M (2002) Once-daily versus twice-daily intravenous administration of vancomycin for infections in hospitalized patients. J Antimicrob Chemother 49:155–160

    Article  PubMed  CAS  Google Scholar 

  84. Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N (2012) Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother 67:17–24

    Article  PubMed  CAS  Google Scholar 

  85. Pauly DJ, Musa DM, Lestico MR, Lindstrom MJ, Hetsko CM (1990) Risk of nephrotoxicity with combination vancomycin-aminoglycoside antibiotic therapy. Pharmacother 10:378–382

    CAS  Google Scholar 

  86. Fanos V, Benini D, Vinco S, Pizzini C, Khoory BJ (1997) Glycopeptides and the newborn infant’s kidney. Pediatr Med Chir 19:259–262

    PubMed  CAS  Google Scholar 

  87. Yi F, Qing H, Jing X, Hua W (2010) Evaluation of nephrotoxicity in 25 elderly patients treated with vancomycin. China Pharmaceutic 7:123–125

    Google Scholar 

  88. Nahata MC (1987) Lack of nephrotoxicity in pediatric patients receiving concurrent vancomycin and aminoglycoside therapy. Chemotherapy 33:302–304

    Article  PubMed  CAS  Google Scholar 

  89. Fangtang GF (1996) Vancomycin: predictive risk factors for nephrotoxicity and implication for monitoring. Texas Medical Center, Houston

  90. Pfeiffer N (2001) Vancomycin may increase risk of nephrotoxicity in neutropenic cancer patients. Oncol Times 23:78

    Google Scholar 

  91. Linder N, Edwards R, MeClead R, Mortensen ME, Walson P, Koren G (1993) Safety of vancomycin with or without gentamicin in neonates. Neonatal Network 12:27–30

    PubMed  CAS  Google Scholar 

  92. Reyes MP (1989) Vancomycin during pregnancy: does it cause hearing loss or nephrotoxicity in the infant? Am J Obstet Gynecol 161:977–981

    PubMed  CAS  Google Scholar 

Download references

Competing interests

The authors of the manuscript have no any competing interests to report with respect to this work.

Founding

None.

Ethical approval

Not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khalili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elyasi, S., Khalili, H., Dashti-Khavidaki, S. et al. Vancomycin-induced nephrotoxicity: mechanism, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 68, 1243–1255 (2012). https://doi.org/10.1007/s00228-012-1259-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-012-1259-9

Keywords

Navigation