Skip to main content

Advertisement

Log in

Tenofovir-induced nephrotoxicity: incidence, mechanism, risk factors, prognosis and proposed agents for prevention

  • Review Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Objective

In this study, data regarding epidemiology, risk factors, pathogenesis and outcome of tenofovir-induced nephrotoxicity will be reviewed, and current and future approaches for prevention will be discussed.

Method

The data were collected by searching Scopus, PubMed, Medline, Science direct, Clinical trials and Cochrane database systematic reviews. The keywords used as search terms were “Tenofovir”, “TDF”, “NRTI”, “Nephrotoxicity”, “Renal failure”, “Kidney damage”, “HIV” and “AIDS”.

Results and conclusion

Several predisposing factors including elevated baseline SCr, concomitant nephrotoxic medications, low body weight, advanced age, tenofovir disoproxil fumarate (TDF) dose and duration of treatment and lower CD4 cell count were identified as risk factors for development of TDF-induced nephrotoxicity. Cellular accumulation through increased entry from the human organic anion transporters and decreased efflux into tubular lumen is main mechanism of nucleotide analogue antiviral induced nephrotoxicity. Renal function assessment and monitoring at baseline and during TDF treatment are the main approach of prevention of TDF-induced nephrotoxicity. Rosiglitazone may be helpful in patients presenting with TDF-induced nephrotoxicity. Pretreatment with melatonin prevented all known histological changes in proximal tubular mitochondira induced by TDF. Use of antioxidants with mitochondria-targeted properties such as MitoQ or Mito-CP may prevent proximal tubular mitochondrial against TDF damage. Vitamin E, ebselen, lipoic acid, plastoquinone, nitroxides, SOD enzyme mimetics, Szeto-Schiller (SS) peptides, and quercetin are other potential agents for prevention of TDF-induced nephrotoxicity. However, data regarding effectiveness of nephroprotective agents against TDF-induced nephrotoxicity are not conclusive. Before extrapolation of the preclinical evidence to clinical practice, these evidence should be confirmed in future human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Food and Drug Administration: FDA report: background package for NDA 21-356: VIREAD (tenofovir disoxoproxil fumarate). 2001; Available from: http:// www.fda.gov/cder/approval/v.htm

  2. Gitman MD, Hirschwerk D, Baskin CH, Singhal PC (2007) Tenofovir-induced kidney injury. Expert Opin Drug Saf 6(2):155–164

    CAS  PubMed  Google Scholar 

  3. Jimenez-Nacher I, Garcia B, Barreiro P, Rodriguez-Novoa S, Morello J, Gonzalez-Lahoz J et al (2008) Trends in the prescription of antiretroviral drugs and impact on plasma HIV-RNA measurements. J Antimicrob Chemother 62(4):816–822

    CAS  PubMed  Google Scholar 

  4. Hall AM, Hendry BM, Nitsch D, Connolly JO (2011) Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. Am J Kidney Dis 57(5):773–780

    CAS  PubMed  Google Scholar 

  5. Quinn KJ, Emerson CR, Dinsmore WW, Donnelly CM (2010) Incidence of proximal renal tubular dysfunction in patients on tenofovir disoproxil fumarate. Int J STD AIDS 21(2):150–151

    CAS  PubMed  Google Scholar 

  6. Verhelst D, Monge M, Meynard JL, Fouqueray B, Mougenot B, Girard PM et al (2002) Fanconi syndrome and renal failure induced by tenofovir: a first case report. Am J Kidney Dis 40(6):1331–1333

    PubMed  Google Scholar 

  7. Karras A, Lafaurie M, Furco A, Bourgarit A, Droz D, Sereni D et al (2003) Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, Fanconi syndrome, and nephrogenic diabetes insipidus. Clin Infect Dis 36(8):1070–1073

    PubMed  Google Scholar 

  8. Malik A, Abraham P, Malik N (2005) Acute renal failure and Fanconi syndrome in an AIDS patient on tenofovir treatment—case report and review of literature. J Infect 51(2):E61–E65

    PubMed  Google Scholar 

  9. Gupta SK (2008) Tenofovir-associated Fanconi syndrome: review of the FDA adverse event reporting system. AIDS Patient Care STDS 22(2):99–103

    PubMed  Google Scholar 

  10. Harmouche H, Le Bras P, Bignani O, Delfraissy JF, Goujard C (2005) Acute renal failure, Fanconi syndrome and insipidus diabetes in a HIV-infected patient treated with Tenofovir. Rev Med Interne 26(6):522–523

    CAS  PubMed  Google Scholar 

  11. Kapitsinou PP, Ansari N (2008) Acute renal failure in an AIDS patient on tenofovir: a case report. J Med Case Rep 2:94

    PubMed Central  PubMed  Google Scholar 

  12. Nelson MR, Katlama C, Montaner JS, Cooper DA, Gazzard B, Clotet B et al (2007) The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years. AIDS 21(10):1273–1281

    CAS  PubMed  Google Scholar 

  13. Parsonage MJ, Wilkins EG, Snowden N, Issa BG, Savage MW (2005) The development of hypophosphataemic osteomalacia with myopathy in two patients with HIV infection receiving tenofovir therapy. HIV Med 6(5):341–346

    CAS  PubMed  Google Scholar 

  14. Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, Miller MD et al (2004) Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 292(2):191–201

    CAS  PubMed  Google Scholar 

  15. Torres Isidro MV, Garcia Benayas T, del Val Gomez Martinez M, Gonzalez Gallardo F, Gambi Pisonero N, Castilla Miguel S et al (2006) Role of bone gammagraphy in the diagnosis of secondary osteomalacia in a patient treated with tenofovir. Rev Esp Med Nucl 25(2):103–106

    CAS  PubMed  Google Scholar 

  16. Gomez Martinez MV, Gallardo FG, Pirogova T, Garcia-Samaniego J (2014) Bone scintigraphy and secondary osteomalacia due to nephrotoxicity in a chronic hepatitis B patient treated with tenofovir. Rev Esp Med Nucl Imagen Mol 33(2):103–105

    CAS  PubMed  Google Scholar 

  17. Peyriere H, Reynes J, Rouanet I, Daniel N, de Boever CM, Mauboussin JM et al (2004) Renal tubular dysfunction associated with tenofovir therapy: report of 7 cases. J Acquir Immune Defic Syndr 35(3):269–273

    PubMed  Google Scholar 

  18. Izzedine H, Isnard-Bagnis C, Hulot JS, Vittecoq D, Cheng A, Jais CK et al (2004) Renal safety of tenofovir in HIV treatment-experienced patients. AIDS 18(7):1074–1076

    CAS  PubMed  Google Scholar 

  19. Krummel T, Parvez-Braun L, Frantzen L, Lalanne H, Marcellin L, Hannedouche T et al (2005) Tenofovir-induced acute renal failure in an HIV patient with normal renal function. Nephrol Dial Transplant 20(2):473–474

    PubMed  Google Scholar 

  20. Lee JC, Marosok RD (2003) Acute tubular necrosis in a patient receiving tenofovir. AIDS 17(17):2543–2544

    PubMed  Google Scholar 

  21. Mocroft A, Kirk O, Reiss P, De Wit S, Sedlacek D, Beniowski M et al (2010) Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. AIDS 24(11):1667–1678

    CAS  PubMed  Google Scholar 

  22. Flandre P, Pugliese P, Cuzin L, Bagnis CI, Tack I, Cabie A et al (2011) Risk factors of chronic kidney disease in HIV-infected patients. Clin J Am Soc Nephrol 6(7):1700–1707

    PubMed  Google Scholar 

  23. Overton ET, Nurutdinova D, Freeman J, Seyfried W, Mondy KE (2009) Factors associated with renal dysfunction within an urban HIV-infected cohort in the era of highly active antiretroviral therapy. HIV Med 10(6):343–350

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Menezes AM, Torelly J Jr, Real L, Bay M, Poeta J, Sprinz E (2011) Prevalence and risk factors associated to chronic kidney disease in HIV-infected patients on HAART and undetectable viral load in Brazil. PLoS One 6(10):e26042

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Arribas JR, Pozniak AL, Gallant JE, Dejesus E, Gazzard B, Campo RE et al (2008) Tenofovir disoproxil fumarate, emtricitabine, and efavirenz compared with zidovudine/lamivudine and efavirenz in treatment-naive patients: 144-week analysis. J Acquir Immune Defic Syndr 47(1):74–78

    CAS  PubMed  Google Scholar 

  26. Izzedine H, Hulot JS, Vittecoq D, Gallant JE, Staszewski S, Launay-Vacher V et al (2005) Long-term renal safety of tenofovir disoproxil fumarate in antiretroviral-naive HIV-1-infected patients. Data from a double-blind randomized active-controlled multicentre study. Nephrol Dial Transplant 20(4):743–746

    CAS  PubMed  Google Scholar 

  27. Cooper RD, Wiebe N, Smith N, Keiser P, Naicker S, Tonelli M (2010) Systematic review and meta-analysis: renal safety of tenofovir disoproxil fumarate in HIV-infected patients. Clin Infect Dis 51(5):496–505

    CAS  PubMed  Google Scholar 

  28. Scherzer R, Estrella M, Li Y, Choi AI, Deeks SG, Grunfeld C et al (2012) Association of tenofovir exposure with kidney disease risk in HIV infection. AIDS 26(7):867–875

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ryom L, Mocroft A, Kirk O, Worm SW, Kamara DA, Reiss P et al (2013) Association between antiretroviral exposure and renal impairment among HIV-positive persons with normal baseline renal function: the D:A:D study. J Infect Dis 207(9):1359–1369

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Reid A, Stohr W, Walker AS, Williams IG, Kityo C, Hughes P et al (2008) Severe renal dysfunction and risk factors associated with renal impairment in HIV-infected adults in Africa initiating antiretroviral therapy. Clin Infect Dis 46(8):1271–1281

    PubMed  Google Scholar 

  31. Brennan A, Evans D, Maskew M, Naicker S, Ive P, Sanne I et al (2011) Relationship between renal dysfunction, nephrotoxicity and death among HIV adults on tenofovir. AIDS 25(13):1603–1609

    PubMed Central  PubMed  Google Scholar 

  32. Campbell LJ, Ibrahim F, Fisher M, Holt SG, Hendry BM, Post FA (2009) Spectrum of chronic kidney disease in HIV-infected patients. HIV Med 10(6):329–336

    CAS  PubMed  Google Scholar 

  33. Gallant JE, DeJesus E, Arribas JR, Pozniak AL, Gazzard B, Campo RE et al (2006) Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med 354(3):251–260

    CAS  PubMed  Google Scholar 

  34. Poizot-Martin I, Solas C, Allemand J, Obry-Roguet V, Pradel V, Bregigeon S et al (2013) Renal impairment in patients receiving a tenofovir-cART regimen: impact of tenofovir trough concentration. J Acquir Immune Defic Syndr 62(4):375–380

    CAS  PubMed  Google Scholar 

  35. Rodriguez-Novoa S, Labarga P, D'Avolio A, Barreiro P, Albalate M, Vispo E et al (2010) Impairment in kidney tubular function in patients receiving tenofovir is associated with higher tenofovir plasma concentrations. AIDS 24(7):1064–1066

    CAS  PubMed  Google Scholar 

  36. Young J, Schafer J, Fux CA, Furrer H, Bernasconi E, Vernazza P et al (2012) Renal function in patients with HIV starting therapy with tenofovir and either efavirenz, lopinavir or atazanavir. AIDS 26(5):567–575

    CAS  PubMed  Google Scholar 

  37. Goicoechea M, Liu S, Best B, Sun S, Jain S, Kemper C et al (2008) Greater tenofovir-associated renal function decline with protease inhibitor-based versus nonnucleoside reverse-transcriptase inhibitor-based therapy. J Infect Dis 197(1):102–108

    CAS  PubMed  Google Scholar 

  38. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions. Clin Infect Dis 42(2):283–290

    CAS  PubMed  Google Scholar 

  39. Crane HM, Kestenbaum B, Harrington RD, Kitahata MM (2007) Amprenavir and didanosine are associated with declining kidney function among patients receiving tenofovir. AIDS 21(11):1431–1439

    CAS  PubMed  Google Scholar 

  40. Rodriguez-Novoa S, Labarga P, Soriano V, Egan D, Albalater M, Morello J et al (2009) Predictors of kidney tubular dysfunction in HIV-infected patients treated with tenofovir: a pharmacogenetic study. Clin Infect Dis 48(11):e108–e116

    CAS  PubMed  Google Scholar 

  41. Jones R, Stebbing J, Nelson M, Moyle G, Bower M, Mandalia S et al (2004) Renal dysfunction with tenofovir disoproxil fumarate-containing highly active antiretroviral therapy regimens is not observed more frequently: a cohort and case-control study. J Acquir Immune Defic Syndr 37(4):1489–1495

    CAS  PubMed  Google Scholar 

  42. Herlitz LC, Mohan S, Stokes MB, Radhakrishnan J, D'Agati VD, Markowitz GS (2010) Tenofovir nephrotoxicity: acute tubular necrosis with distinctive clinical, pathological, and mitochondrial abnormalities. Kidney Int 78(11):1171–1177

    CAS  PubMed  Google Scholar 

  43. Wever K, van Agtmael MA, Carr A (2010) Incomplete reversibility of tenofovir-related renal toxicity in HIV-infected men. J Acquir Immune Defic Syndr 55(1):78–81

    CAS  PubMed  Google Scholar 

  44. Campbell LJ, Hamzah L, Post FA (2011) Is tenofovir-related renal toxicity incompletely reversible? J Acquir Immune Defic Syndr 56(3):e95, author reply e-6

    PubMed  Google Scholar 

  45. Bonjoch A, Echeverria P, Perez-Alvarez N, Puig J, Estany C, Clotet B et al (2012) High rate of reversibility of renal damage in a cohort of HIV-infected patients receiving tenofovir-containing antiretroviral therapy. Antiviral Res 96(1):65–69

    CAS  PubMed  Google Scholar 

  46. Gallant JE, Parish MA, Keruly JC, Moore RD (2005) Changes in renal function associated with tenofovir disoproxil fumarate treatment, compared with nucleoside reverse-transcriptase inhibitor treatment. Clin Infect Dis 40(8):1194–1198

    CAS  PubMed  Google Scholar 

  47. Jose S, Hamzah L, Campbell LJ, Hill T, Fisher M, Leen C, Gilson R, Walsh J, Nelson M, Hay P, Johnson M, Chadwick D, Nitsch D, Jones R, Sabin CA, Post FA (2014) Incomplete reversibility of estimated glomerular filtration rate decline following tenofovir disoproxil fumarate exposure. J Infect Dis. doi:10.1093/infdis/jiu107

    PubMed Central  PubMed  Google Scholar 

  48. Cundy KC (1999) Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin Pharmacokinet 36(2):127–143

    CAS  PubMed  Google Scholar 

  49. Cihlar T, Lin DC, Pritchard JB, Fuller MD, Mendel DB, Sweet DH (1999) The antiviral nucleotide analogs cidofovir and adefovir are novel substrates for human and rat renal organic anion transporter 1. Mol Pharmacol 56(3):570–580

    CAS  PubMed  Google Scholar 

  50. Tanji N, Tanji K, Kambham N, Markowitz GS, Bell A, D’Agati VD (2001) Adefovir nephrotoxicity: possible role of mitochondrial DNA depletion. Hum Pathol 32(7):734–740

    CAS  PubMed  Google Scholar 

  51. Cihlar T, Ho ES, Lin DC, Mulato AS (2001) Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids 20(4–7):641–648

    CAS  PubMed  Google Scholar 

  52. Ortiz A, Justo P, Sanz A, Melero R, Caramelo C, Guerrero MF et al (2005) Tubular cell apoptosis and cidofovir-induced acute renal failure. Antivir Ther 10(1):185–190

    CAS  PubMed  Google Scholar 

  53. Ho ES, Lin DC, Mendel DB, Cihlar T (2000) Cytotoxicity of antiviral nucleotides adefovir and cidofovir is induced by the expression of human renal organic anion transporter 1. J Am Soc Nephrol 11(3):383–393

    CAS  PubMed  Google Scholar 

  54. Daugas E, Rougier JP, Hill G (2005) HAART-related nephropathies in HIV-infected patients. Kidney Int 67(2):393–403

    CAS  PubMed  Google Scholar 

  55. Kohler JJ, Hosseini SH, Hoying-Brandt A, Green E, Johnson DM, Russ R et al (2009) Tenofovir renal toxicity targets mitochondria of renal proximal tubules. Lab Investig 89(5):513–519

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Van Rompay KK, Brignolo LL, Meyer DJ, Jerome C, Tarara R, Spinner A et al (2004) Biological effects of short-term or prolonged administration of 9-[2-(phosphonomethoxy)propyl]adenine (tenofovir) to newborn and infant rhesus macaques. Antimicrob Agents Chemother 48(5):1469–1487

    PubMed Central  PubMed  Google Scholar 

  57. Kohler JJ, Hosseini SH, Green E, Abuin A, Ludaway T, Russ R et al (2011) Tenofovir renal proximal tubular toxicity is regulated by OAT1 and MRP4 transporters. Lab Investig 91(6):852–858

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Uwai Y, Ida H, Tsuji Y, Katsura T, Inui K (2007) Renal transport of adefovir, cidofovir, and tenofovir by SLC22A family members (hOAT1, hOAT3, and hOCT2). Pharm Res 24(4):811–815

    CAS  PubMed  Google Scholar 

  59. Ray AS, Cihlar T, Robinson KL, Tong L, Vela JE, Fuller MD et al (2006) Mechanism of active renal tubular efflux of tenofovir. Antimicrob Agents Chemother 50(10):3297–3304

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Mandikova J, Volkova M, Pavek P, Cesnek M, Janeba Z, Kubicek V et al (2013) Interactions with selected drug renal transporters and transporter-mediated cytotoxicity in antiviral agents from the group of acyclic nucleoside phosphonates. Toxicology 311(3):135–146

    CAS  PubMed  Google Scholar 

  61. Huisman MT, Smit JW, Crommentuyn KM, Zelcer N, Wiltshire HR, Beijnen JH et al (2002) Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 16(17):2295–2301

    CAS  PubMed  Google Scholar 

  62. Kiser JJ, Carten ML, Aquilante CL, Anderson PL, Wolfe P, King TM et al (2008) The effect of lopinavir/ritonavir on the renal clearance of tenofovir in HIV-infected patients. Clin Pharmacol Ther 83(2):265–272

    CAS  PubMed  Google Scholar 

  63. Kearney BP, Mathias A, Mittan A, Sayre J, Ebrahimi R, Cheng AK (2006) Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. J Acquir Immune Defic Syndr 43(3):278–283

    CAS  PubMed  Google Scholar 

  64. Cihlar T, Ray AS, Laflamme G, Vela JE, Tong L, Fuller MD et al (2007) Molecular assessment of the potential for renal drug interactions between tenofovir and HIV protease inhibitors. Antivir Ther 12(2):267–272

    CAS  PubMed  Google Scholar 

  65. Mallants R, Van Oosterwyck K, Van Vaeck L, Mols R, De Clercq E, Augustijns P (2005) Multidrug resistance-associated protein 2 (MRP2) affects hepatobiliary elimination but not the intestinal disposition of tenofovir disoproxil fumarate and its metabolites. Xenobiotica 35(10–11):1055–1066

    CAS  PubMed  Google Scholar 

  66. Tong L, Phan TK, Robinson KL, Babusis D, Strab R, Bhoopathy S et al (2007) Effects of human immunodeficiency virus protease inhibitors on the intestinal absorption of tenofovir disoproxil fumarate in vitro. Antimicrob Agents Chemother 51(10):3498–3504

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Pontrelli G, Cotugno N, Amodio D, Zangari P, Tchidjou HK, Baldassari S et al (2012) Renal function in HIV-infected children and adolescents treated with tenofovir disoproxil fumarate and protease inhibitors. BMC Infect Dis 12:18

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Cao Y, Han Y, Xie J, Cui Q, Zhang L, Li Y et al (2013) Impact of a tenofovir disoproxil fumarate plus ritonavir-boosted protease inhibitor-based regimen on renal function in HIV-infected individuals: a prospective, multicenter study. BMC Infect Dis 13:301

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Gallant JE, Moore RD (2009) Renal function with use of a tenofovir-containing initial antiretroviral regimen. AIDS 23(15):1971–1975

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Izzedine H, Hulot JS, Villard E, Goyenvalle C, Dominguez S, Ghosn J et al (2006) Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J Infect Dis 194(11):1481–1491

    CAS  PubMed  Google Scholar 

  71. Ray AS, Cihlar T (2007) Unlikely association of multidrug-resistance protein 2 single-nucleotide polymorphisms with tenofovir-induced renal adverse events. J Infect Dis 195(9):1389–1390, author reply 90-1

    PubMed  Google Scholar 

  72. Kiser JJ, Aquilante CL, Anderson PL, King TM, Carten ML, Fletcher CV (2008) Clinical and genetic determinants of intracellular tenofovir diphosphate concentrations in HIV-infected patients. J Acquir Immune Defic Syndr 47(3):298–303

    CAS  PubMed  Google Scholar 

  73. Pushpakom SP, Liptrott NJ, Rodriguez-Novoa S, Labarga P, Soriano V, Albalater M et al (2011) Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis 204(1):145–153

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Sanchez-Conde M, Gil P, Sanchez-Somolinos M, Gonzalez-Lahoz J, Soriano V (2005) Hepatic and renal safety profile of tenofovir in HIV-infected patients with hepatitis C, including patients on interferon plus ribavirin. HIV Clin Trials 6(5):278–280

    PubMed  Google Scholar 

  75. Gutierrez S, Guillemi S, Jahnke N, Montessori V, Harrigan PR, Montaner JS (2008) Tenofovir-based rescue therapy for advanced liver disease in 6 patients coinfected with HIV and hepatitis B virus and receiving lamivudine. Clin Infect Dis 46(3):e28–e30

    CAS  PubMed  Google Scholar 

  76. Birkus G, Hitchcock MJ, Cihlar T (2002) Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 46(3):716–723

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Biesecker G, Karimi S, Desjardins J, Meyer D, Abbott B, Bendele R et al (2003) Evaluation of mitochondrial DNA content and enzyme levels in tenofovir DF-treated rats, rhesus monkeys and woodchucks. Antiviral Res 58(3):217–225

    CAS  PubMed  Google Scholar 

  78. Kohler JJ, Hosseini SH (2011) Subcellular renal proximal tubular mitochondrial toxicity with tenofovir treatment. Methods Mol Biol 755:267–277

    CAS  PubMed  Google Scholar 

  79. Lebrecht D, Venhoff AC, Kirschner J, Wiech T, Venhoff N, Walker UA (2009) Mitochondrial tubulopathy in tenofovir disoproxil fumarate-treated rats. J Acquir Immune Defic Syndr 51(3):258–263

    CAS  PubMed  Google Scholar 

  80. Ramamoorthy H, Abraham P, Isaac B (2014) Mitochondrial dysfunction and electron transport chain complex defect in a rat model of tenofovir disoproxil fumarate nephrotoxicity. J Biochem Mol Toxicol

  81. Cote HC, Magil AB, Harris M, Scarth BJ, Gadawski I, Wang N et al (2006) Exploring mitochondrial nephrotoxicity as a potential mechanism of kidney dysfunction among HIV-infected patients on highly active antiretroviral therapy. Antivir Ther 11(1):79–86

    CAS  PubMed  Google Scholar 

  82. Lewis W, Dalakas MC (1995) Mitochondrial toxicity of antiviral drugs. Nat Med 1(5):417–422

    CAS  PubMed  Google Scholar 

  83. Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G (2003) Drug-induced Fanconi’s syndrome. Am J Kidney Dis 41(2):292–309

    CAS  PubMed  Google Scholar 

  84. Abraham P, Ramamoorthy H, Isaac B (2013) Depletion of the cellular antioxidant system contributes to tenofovir disoproxil fumarate-induced mitochondrial damage and increased oxido-nitrosative stress in the kidney. J Biomed Sci 20:61

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Aberg JA, Gallant JE, Ghanem KG, Emmanuel P, Zingman BS, Horberg MA (2014) Primary care guidelines for the management of persons infected with HIV: 2013 update by the HIV medicine association of the Infectious Diseases Society of America. Clin Infect Dis 58(1):e1–e34

    PubMed  Google Scholar 

  86. Kearney BP, Yale K, Shah J, Zhong L, Flaherty JF (2006) Pharmacokinetics and dosing recommendations of tenofovir disoproxil fumarate in hepatic or renal impairment. Clin Pharmacokinet 45(11):1115–1124

    CAS  PubMed  Google Scholar 

  87. European AIDS Clinical Society (2013) http://www.eacsociety.org/Portals/0/Guidelines_Online_131014.pdf

  88. Gupta A, Bugeja A, Kirpalani D (2012) Tenofovir-induced nephrotoxicity: myths and facts. Saudi J Kidney Dis Transpl 23(1):148–149

    PubMed  Google Scholar 

  89. Liborio AB, Andrade L, Pereira LV, Sanches TR, Shimizu MH, Seguro AC (2008) Rosiglitazone reverses tenofovir-induced nephrotoxicity. Kidney Int 74(7):910–918

    CAS  PubMed  Google Scholar 

  90. Ramamoorthy H, Abraham P, Isaac B (2014) Preclinical efficacy of melatonin in the amelioration of tenofovir nephrotoxicity by the attenuation of oxidative stress, nitrosative stress, and inflammation in rats. J Basic Clin Physiol Pharmacol 27:1–13

    Google Scholar 

  91. Adaramoye OA, Adewumi OM, Adesanoye OA, Faokunla OO, Farombi EO (2012) Effect of tenofovir, an antiretroviral drug, on hepatic and renal functional indices of Wistar rats: protective role of vitamin E. J Basic Clin Physiol Pharmacol 23(2):69–75

    CAS  PubMed  Google Scholar 

  92. Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298(10):1180–1188

    CAS  PubMed  Google Scholar 

  93. Singh S, Loke YK, Furberg CD (2007) Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 298(10):1189–1195

    CAS  PubMed  Google Scholar 

  94. Sener G, Sehirli AO, Altunbas HZ, Ersoy Y, Paskaloglu K, Arbak S et al (2002) Melatonin protects against gentamicin-induced nephrotoxicity in rats. J Pineal Res 32(4):231–236

    CAS  PubMed  Google Scholar 

  95. Hara M, Yoshida M, Nishijima H, Yokosuka M, Iigo M, Ohtani-Kaneko R et al (2001) Melatonin, a pineal secretory product with antioxidant properties, protects against cisplatin-induced nephrotoxicity in rats. J Pineal Res 30(3):129–138

    CAS  PubMed  Google Scholar 

  96. Smith RA, Murphy MP (2011) Mitochondria-targeted antioxidants as therapies. Discov Med 11(57):106–114

    PubMed  Google Scholar 

  97. Smith RA, Porteous CM, Coulter CV, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263(3):709–716

    CAS  PubMed  Google Scholar 

  98. Filipovska A, Kelso GF, Brown SE, Beer SM, Smith RA, Murphy MP (2005) Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J Biol Chem 280(25):24113–24126

    CAS  PubMed  Google Scholar 

  99. Brown SE, Ross MF, Sanjuan-Pla A, Manas AR, Smith RA, Murphy MP (2007) Targeting lipoic acid to mitochondria: synthesis and characterization of a triphenylphosphonium-conjugated alpha-lipoyl derivative. Free Radic Biol Med 42(12):1766–1780

    CAS  PubMed  Google Scholar 

  100. Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP et al (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787(5):437–461

    CAS  PubMed  Google Scholar 

  101. Trnka J, Blaikie FH, Smith RA, Murphy MP (2008) A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria. Free Radic Biol Med 44(7):1406–1419

    CAS  PubMed  Google Scholar 

  102. Kelso GF, Maroz A, Cocheme HM, Logan A, Prime TA, Peskin AV et al (2012) A mitochondria-targeted macrocyclic Mn(II) superoxide dismutase mimetic. Chem Biol 19(10):1237–1246

    CAS  PubMed  Google Scholar 

  103. Dhanasekaran A, Kotamraju S, Karunakaran C, Kalivendi SV, Thomas S, Joseph J et al (2005) Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondrial superoxide. Free Radic Biol Med 39(5):567–583

    CAS  PubMed  Google Scholar 

  104. Dhanarajan R, Abraham P, Isaac B (2006) Protective effect of ebselen, a selenoorganic drug, against gentamicin-induced renal damage in rats. Basic Clin Pharmacol Toxicol 99(3):267–272

    CAS  PubMed  Google Scholar 

  105. Baldew GS, McVie JG, van der Valk MA, Los G, de Goeij JJ, Vermeulen NP (1990) Selective reduction of cis-diamminedichloroplatinum(II) nephrotoxicity by ebselen. Cancer Res 50(21):7031–7036

    CAS  PubMed  Google Scholar 

  106. Yang L, Zhao K, Calingasan NY, Luo G, Szeto HH, Beal MF (2009) Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid Redox Signal 11(9):2095–2104

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Szeto HH, Schiller PW (2011) Novel therapies targeting inner mitochondrial membrane–from discovery to clinical development. Pharm Res 28(11):2669–2679

    CAS  PubMed  Google Scholar 

  108. Zhao K, Zhao GM, Wu D, Soong Y, Birk AV, Schiller PW et al (2004) Cell-permeable peptide antioxidants targeted to inner mitochondrial membrane inhibit mitochondrial swelling, oxidative cell death, and reperfusion injury. J Biol Chem 279(33):34682–34690

    CAS  PubMed  Google Scholar 

  109. Manczak M, Mao P, Calkins MJ, Cornea A, Reddy AP, Murphy MP et al (2010) Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer's disease neurons. J Alzheimers Dis 20(Suppl 2):S609–S631

    PubMed Central  PubMed  Google Scholar 

  110. Whiteman M, Spencer JP, Szeto HH, Armstrong JS (2008) Do mitochondriotropic antioxidants prevent chlorinative stress-induced mitochondrial and cellular injury? Antioxid Redox Signal 10(3):641–650

    CAS  PubMed  Google Scholar 

  111. Cihlar T, Laflamme G, Fisher R, Carey AC, Vela JE, Mackman R et al (2009) Novel nucleotide human immunodeficiency virus reverse transcriptase inhibitor GS-9148 with a low nephrotoxic potential: characterization of renal transport and accumulation. Antimicrob Agents Chemother 53(1):150–156

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Cihlar T, Ray AS, Boojamra CG, Zhang L, Hui H, Laflamme G et al (2008) Design and profiling of GS-9148, a novel nucleotide analog active against nucleoside-resistant variants of human immunodeficiency virus type 1, and its orally bioavailable phosphonoamidate prodrug, GS-9131. Antimicrob Agents Chemother 52(2):655–665

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Izzedine H, Thibault V, Valantin MA, Peytavin G, Schneider L, Benhamou Y (2010) Tenofovir/probenecid combination in HIV/HBV-coinfected patients: how to escape Fanconi syndrome recurrence? AIDS 24(7):1078–1079

    PubMed  Google Scholar 

  114. Wong CC, Botting NP, Orfila C, Al-Maharik N, Williamson G (2011) Flavonoid conjugates interact with organic anion transporters (OATs) and attenuate cytotoxicity of adefovir mediated by organic anion transporter 1 (OAT1/SLC22A6). Biochem Pharmacol 81(7):942–949

    CAS  PubMed  Google Scholar 

  115. Sung MJ, Kim DH, Jung YJ, Kang KP, Lee AS, Lee S et al (2008) Genistein protects the kidney from cisplatin-induced injury. Kidney Int 74(12):1538–1547

    CAS  PubMed  Google Scholar 

  116. Dashti-Khavidaki S, Shahbazi F, Khalili H, Lessan-Pezeshki M (2012) Potential renoprotective effects of silymarin against nephrotoxic drugs: a review of literature. J Pharm Pharm Sci 15(1):112–123

    PubMed  Google Scholar 

  117. Jafari A, Dashti-Khavidaki S, Khalili H, Lessan-Pezeshki M (2013) Potential nephroprotective effects of l-carnitine against drug-induced nephropathy: a review of literature. Expert Opin Drug Saf 12(4):523–543

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Khalili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, A., Khalili, H. & Dashti-Khavidaki, S. Tenofovir-induced nephrotoxicity: incidence, mechanism, risk factors, prognosis and proposed agents for prevention. Eur J Clin Pharmacol 70, 1029–1040 (2014). https://doi.org/10.1007/s00228-014-1712-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-014-1712-z

Keywords

Navigation