Skip to main content
Log in

A Creatine Transporter Is Operative at the Brush Border Level of the Rat Jejunal Enterocyte

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Although ergogenic effects and health benefits have been reported for creatine used as nutritional supplement, to date little is known about the mechanism of creatine absorption in the small intestine. Thus the current study was undertaken to elucidate the mechanism of creatine intake in rat jejunum with the use of well-purified brush border membrane vesicles, isolated from jejunal enterocyte. Creatine uptake was found markedly stimulated by inwardly directed Na+ and Clgradients, potential-sensitive, strongly reduced by the substitution of Na+ and Cl with various cations and anions and positively affected by intravesicular K+. Moreover, creatine uptake is: 1) significantly inhibited by creatine stuctural analogs, 2) abolished by low concentrations of 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA), 3) saturable as a function of creatine concentration with an apparent Michaelis-Menten constant of 24.08 ± 0.80 μM and a maximal velocity of 391.30 ± 6.19 pmoles mg protein−1 30 s−1. The transport is electrogenic since at least two Na+ and one Cl are required to transport one creatine molecule. Western blot analysis showed the same amount of creatine transport protein in the jejunal apical membrane when compared to ileum. Thus, these data demonstrate the existence of a Na+- and Cl-dependent, membrane potential-sensitive, electrogenic carrier-mediated mechanism for creatine absorption in rat jejunal apical membrane vesicles, which is biochemically and pharmacologically similar to those observed in other tissues. However, in other cell types the stimulatory effect of intravesicular K+ was never detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  • M.F. Beal (2003) ArticleTitleBioenergetic approaches for neuroprotection in Parkinson’s disease Ann. Neurol. 53 539–548

    Google Scholar 

  • N. Bindslev B.A. Hirayama E.M. Wright (1997) ArticleTitleNa/D-glucose cotransport and SGLT1 expression in hen colon correlates with dietary Na+ Comp. Biochem. Physiol. A 118 219–227

    Google Scholar 

  • M.N. Bradford (1976) ArticleTitleA rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding Anal. Biochem. 72 248–254 Occurrence Handle10.1006/abio.1976.9999 Occurrence Handle1:CAS:528:DyaE28XksVehtrY%3D Occurrence Handle942051

    Article  CAS  PubMed  Google Scholar 

  • N.H. Chen M.E. Reith M.W. Quick (2004) ArticleTitleSynaptic uptake and beyond: the sodium- and chloride-dependent neurotransmitter transporter family SLC6 Pfluegers Arch. 447 519–531

    Google Scholar 

  • M.M. Daly S. Seifter (1980) ArticleTitleUptake of creatine by cultured cells Arch. Biochem. Biophys. 203 317–324

    Google Scholar 

  • J.R. Dodd D.L. Christie (2001) ArticleTitleCysteine 144 in the third transmembrane domain of the creatine transporter is located close to a substrate-binding site J Biol. Chem. 276 46983–46988

    Google Scholar 

  • P.P. Dzeja A. Terzic (2003) ArticleTitlePhosphotransfer networks and cellular energetics J. Exp. Biol. 206 2039–2047

    Google Scholar 

  • R.J. Ferrante O.A. Andreassen B.G. Jenkins A. Dedeoglu S. Kuemmerle J.K. Kubilus R. Kadurrah-Daouk S.M. Hersch M.F. Beal (2000) ArticleTitleNeuroprotective effects of creatine in a transgenic mouse model of Huntington’s disease J. Neurosci. 20 4389–4397

    Google Scholar 

  • P. Fossati L. Prencipe G. Berti (1983) ArticleTitleEnzymic creatinine assay: a new colorimetric method based on hydrogen peroxide measurement Clin. Chem. 29 1494–1496

    Google Scholar 

  • M. Garcia-Delgado M. J. Peral M. Cano M.L. Calonge A. Ilundain (2001) ArticleTitleCreatine transport in brush-border membrane vescicles isolated from rat kidney cortex J. Am. Soc. Nephrol. 12 1819–1825

    Google Scholar 

  • H-L. Guerrero-Ontiveros T. Wollimann (1992) ArticleTitleCreatine supplementation in health and disease. Effect of chronic creatine ingestion in vivo: downregulation of the expression of creatine transporter isoforms in skeletal muscle Mol. cell. Biochem. 184 427–437

    Google Scholar 

  • C. Guimbal M.W. Kilimann (1993) ArticleTitleA Na+-dependent creatine. transporter in rabbit brain, muscle, heart and kidney. cDNA cloning and functional expression J. Biol. Chem. 268 8418–8421

    Google Scholar 

  • C. Guimbal M.W. Kilimann (1994) ArticleTitleA creatine transporter cDNA from Torpedo illustrates structure/function relationships in the GABA/Noradrenaline transporter family J. Mol. Biol. 241 317–324

    Google Scholar 

  • M. Hediger M.F. Romero J.B. Peng A. Rolfs H. Takanaga E.A. Bruford (2004) ArticleTitleThe ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins Pfluegers Arch. 447 465–468

    Google Scholar 

  • M. Horn S. Frantz H. Remkes A. Laser B. Urban A. Mettenleiter K. Schnackerz S. Neubauer (1998) ArticleTitleEffects of chronic dietary creatine feeding on cardiac energy metabolism and on creatine content in heart, skeletal muscle, brain, liver and kidney J. Mol. Cell. Cardiol. 30 277–284

    Google Scholar 

  • O.S. Ipsiroglu C. Stromberger J. Ilas H. Höger A. Mühl S. Stökler-Ipsiroglu (2001) ArticleTitleChanges of tissue creatine concentrations upon oral supplementation of creatine-monohydrate in various animal species Life Sci. 69 1805–1815

    Google Scholar 

  • G.S. Iyer R. Krahe L.A. Goodwin N.A. Doggett M.J. Siciliano V.L. Funanage R. Proujansky (1996) ArticleTitleIdentification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28 Genomics 34 143–146

    Google Scholar 

  • J.D. Loike M. Somes S.C. Silverstein (1986) ArticleTitleCreatine uptake, metabolism, and efflux in human monocytes and macrophages Am. J. Physiol. 251 C128–C135

    Google Scholar 

  • W. Mayser P. Schloss H. Betz (1992) ArticleTitlePrimary structure and functional expression of a choline transporter expressed in the rat nervous system FEBS Lett. 305 31–36

    Google Scholar 

  • H. Murer U. Hopfer R. Kinne (1976) ArticleTitleSodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney Biochem. J. 154 597–604

    Google Scholar 

  • S. Nakayama J.F. Clark (2003) ArticleTitleSmooth muscle and NMR review: an overview of smooth muscle metabolism Mol. Cell. Biochem. 244 17–30

    Google Scholar 

  • S.R. Nash B. Giros S.F. Kingsmore J.M. Rochelle S.T. Suter P. Gregor M.F. Seldin M.G. Caron (1994) ArticleTitleCloning, pharmacological characterization, and genomic localization of␣the human creatine transporter Receptors Channels 2 165–174

    Google Scholar 

  • M.N. Orsenigo M. Tosco G. Esposito A. Faelli (1985) ArticleTitleThe basolateral membrane of rat enterocyte: its purification from brush border contamination Anal. Biochem. 144 577–583

    Google Scholar 

  • M.N. Orsenigo M. Tosco A. Faelli (1994) ArticleTitleRat jejunal basolateral membrane Cl/HCO3 exchanger is modulated by a Na-sensitive modifier site J. Membrane Biol. 138 47–53

    Google Scholar 

  • M.J. Peral-Rubio M. Garcia-Delgado M.L. Calonge J.M. Duran M.C. La Horra ParticleDe T. Wallimann O. Speer A.A. Ilundain (2002) ArticleTitleHuman, rat and chicken small intestinal Na+-Cl-creatine transporter: functional, molecular characterization and localization J. Physiol. 545 133–144 Occurrence Handle10.1113/jphysiol.2002.026377 Occurrence Handle1:CAS:528:DC%2BD3sXktFersA%3D%3D Occurrence Handle12433955

    Article  CAS  PubMed  Google Scholar 

  • A.M. Persky G.A. Bazeau (2001) ArticleTitleClinical pharmacology of the dietary supplement creatine monohydrate Pharmacol. Rev. 53 161–176

    Google Scholar 

  • G. Rudnick J. Clark (1993) ArticleTitleFrom synapse to vesicle: the reuptake and storage of biogenic amine neurotransmitters Biochim. Biophys. Acta 1144 249–263

    Google Scholar 

  • N. Sandoval D. Bauer V. Brenner J.F. Coy B. Dresher P. Kioschis B. Korn G. Nyakatura A. Poustka K. Reichwald A. Rosenthal M. Platzer (1996) ArticleTitleThe genomic organization of human creatine transporter (CRTR) gene located in Xq28 Genomics 35 383–385

    Google Scholar 

  • P. Schloss W. Mayser H. Betz. (1994) ArticleTitleThe putative rat choline transporter CHOT1 transports creatine and is highly expressed in neural and muscle-rich tissues Biochem. Biophys. Res. Comm. 198 637–654

    Google Scholar 

  • J. Schmitz H. Preiser D. Maestracci B.K. Ghosh J.J. Cerda R.K. Crane (1973) ArticleTitlePurification of the human intestinal brush border membrane Biochim. Biophys. Acta 323 98–112

    Google Scholar 

  • R.J. Snow R.M. Murphy (2001) ArticleTitleCreatine and the creatine transporter: A review Mol. Cell. Biochem. 224 169–181

    Google Scholar 

  • M.A. Tarnopolsky A. Parshad B. Walzel U. Schlattner T. Wallimann (2001) ArticleTitleCreatine transporter and mitochondrial creatine kinase protein content in myopathies Muscle Nerve 24 682–688

    Google Scholar 

  • L.A. Turnberg F.A. Bieberdorf S.G. Morawski J.S. Fordtran (1970) ArticleTitleInterrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum J. Clin. Invest. 49 557–567

    Google Scholar 

  • J. Walker (1979) ArticleTitleCreatine: biosynthesis, regulation and function Adv. Enzym. 50 177–242

    Google Scholar 

  • T. Wallimann W. Hemmer (1994) ArticleTitleCreatine kinase in non-muscle tissues and cells Mol. Cell. Biol. 133-134 193–220

    Google Scholar 

  • B. Walzel O. Speer O. Boehm S. Kristiansen S. Chan K. Clarke J.P. Magyar E.A. Richter T. Wallimann (2002) ArticleTitleNew creatine transporter assay and identification of distinct creatine␣transporter isoforms in muscle Am. J. Physiol. 283 E390–E401

    Google Scholar 

  • M. Wyss R. Kaddurrah-Daouk (2000) ArticleTitleCreatine and creatinine metabolism Physiol. Rev. 80 1107–1213

    Google Scholar 

  • M. Wyss A. Schulze (2002) ArticleTitleHealth implications of creatine: can oral creatine supplementation protect against neurological and atherosclerotic disease? Neuroscience 112 243–260 Occurrence Handle10.1016/S0306-4522(02)00088-X Occurrence Handle1:CAS:528:DC%2BD38XktVartbg%3D Occurrence Handle12044443

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tosco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tosco, M., Faelli, A., Sironi, C. et al. A Creatine Transporter Is Operative at the Brush Border Level of the Rat Jejunal Enterocyte. J Membrane Biol 202, 85–95 (2004). https://doi.org/10.1007/s00232-004-0721-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-004-0721-8

Keywords

Navigation