Skip to main content
Log in

Electrogenic Kinetics of a Mammalian Intestinal Type IIb Na+/Pi Cotransporter

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The kinetics of a type IIb Na+-coupled inorganic phosphate (Pi) cotransporter (NaPi-IIb) cloned from mouse small intestine were studied using the two-electrode voltage clamp applied to Xenopus oocytes. In the steady state, mouse NaPi-IIb showed a curvilinear I-V relationship, with rate-limiting behavior only for depolarizing potentials. The Pi dose dependence was Michaelian, with an apparent affinity constant for Pi (\( {K_{\rm m}}^{\rm P_i} \)) of 10 ± 1 μM at −60 mV. Unlike for rat NaPi-IIa, \( {K_{\rm m}}^{\rm P_i} \) increased with membrane hyperpolarization, as reported for human NaPi-IIa, flounder NaPi-IIb and zebrafish NaPi-IIb2. The apparent affinity constant for Na+ (\( {K_{\rm m}}^{\rm Na} \)) was 23 ± 1 mM at −60 mV, and the Na+ activation was cooperative with a Hill coefficient of approximately 2. Pre-steady-state currents were documented in the absence of Pi and showed a strong dependence on external Na+. The hyperpolarizing shift of the charge distribution midpoint potential was 65 mV/log[Na]. Approximately half the moveable charge was attributable to the empty carrier. A comparison of the voltage dependence of steady-state Pi-induced current and pre-steady-state charge movement indicated that for −120 mV ≤ V ≤ 0 mV the voltage dependence of the empty carrier was the main determinant of the curvilinear steady-state cotransport characteristic. External protons partially inhibited NaPi-IIb steady-state activity, independent of the titration of mono- and divalent Pi, and immobilized pre-steady-state charge movements associated with the first Na+ binding step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. These proteins originate from three distinct solute carrier gene families SLC17 (type I, e.g., NPT1), SLC34 (type II, e.g., NaPi-II) and SLC20 (type III, e.g., Pit1/2) according to the Hugo gene classification for nomenclature (Hediger et al., 2004)

  2. For rat NaPi-IIa and flounder NaPi-IIb isoforms, a fast component of charge movement has also been detected in the absence of Na+, leading to the proposal of an intermediate state for the empty carrier (Forster et al., 2000); however, for mouse NaPi-IIb, we were unable to detect such a component.

References

  • Amstutz M., Mohrmann M., Gmaj P., Murer H. 1985. Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Am. J. Physiol. 248:F705–F710

    PubMed  CAS  Google Scholar 

  • Bacconi A., Virkki L.V., Biber J., Murer H., Forster I.C. 2005. Renouncing electrogenicity is not free of charge: Switching on electrogenicity in a Na+-coupled phosphate cotransporter. Proc. Natl. Acad. Sci. USA 102:12606–12611

    Article  PubMed  CAS  Google Scholar 

  • Beck L., Karaplis A.C., Amizuka N., Hewson A.S., Ozawa H., Tenenhouse H.S. 1998. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities. Proc. Natl. Acad. Sci. USA 95:5372–5377

    Article  PubMed  CAS  Google Scholar 

  • Boorer K.J., Loo D.D., Frommer W.B., Wright E.M. 1996. Transport mechanism of the cloned potato H+/sucrose cotransporter StSUT1. J. Biol. Chem. 271:25139–25144

    Article  PubMed  CAS  Google Scholar 

  • Bossi E., Centinaio E., Castagna M., Giovannardi S., Vincenti S., Sacchi V.F., Peres A. 1999. Ion binding and permeation through the lepidopteran amino acid transporter KAAT1 expressed in Xenopus oocytes. J. Physiol. 515:729–742

    Article  PubMed  CAS  Google Scholar 

  • Busch A., Waldegger S., Herzer T., Biber J., Markovich D., Hayes G., Murer H., Lang F. 1994. Electrophysiological analysis of Na+/Pi cotransport mediated by a transporter cloned from rat kidney and expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 91:8205–8208

    Article  PubMed  CAS  Google Scholar 

  • Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T.J., Higgins, D.G., Thompson, J.D. 2003. Multiple sequence alignment with the Clustal series of programs. Nucl Acids Res 31:3497–3500

    Google Scholar 

  • Danisi G., Murer H., Straub R.W. 1984. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. Am. J. Physiol. 246:G180–G186

    PubMed  CAS  Google Scholar 

  • de la Horra C., Hernando N., Lambert G., Forster I., Biber J., Murer H. 2000. Molecular determinants of pH sensitivity of the type IIa Na/Pi cotransporter. J. Biol. Chem. 275:6284–6287

    Article  Google Scholar 

  • Ehnes C., Forster I.C., Kohler K., Bacconi A., Stange G., Biber J., Murer H. 2004. Structure-function relations of the first and fourth predicted extracellular linkers of the type IIa Na+/Pi cotransporter: I. Cysteine scanning mutagenesis. J. Gen. Physiol. 124:475–488

    Article  PubMed  CAS  Google Scholar 

  • Elger M., Werner A., Herter P., Kohl B., Kinne R.K., Hentschel H. 1998. Na-Pi cotransport sites in proximal tubule and collecting tubule of winter flounder (Pleuronectes americanus). Am. J. Physiol. 274:F374–F383

    PubMed  CAS  Google Scholar 

  • Feild J.A., Zhang L., Brun K.A., Brooks D.P., Edwards R.M. 1999. Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem. Biophys. Res. Commun. 258:578–582

    Article  PubMed  CAS  Google Scholar 

  • Forster I., Hernando N., Biber J., Murer H. 1998. The voltage dependence of a cloned mammalian renal type II Na+/Pi cotransporter (NaPi−2). J. Gen. Physiol. 112:1–18

    Article  PubMed  CAS  Google Scholar 

  • Forster I.C., Biber J., Murer H. 2000. Proton-sensitive transitions of renal type II Na+-coupled phosphate cotransporter kinetics. Biophys. J. 79:215–230

    Article  PubMed  CAS  Google Scholar 

  • Forster I.C., Kohler K., Biber J., Murer H. 2002a. Forging the link between structure and function of electrogenic cotransporters: The renal type IIa Na+/Pi cotransporter as a case study. Prog. Biophys. Mol. Biol. 80:69–108

    Article  CAS  Google Scholar 

  • Forster I.C., Kohler K., Stange G., Biber J., Murer H. 2002b. Modulation of renal type IIa Na+/Pi cotransporter kinetics by the arginine modifier phenylglyoxal. J. Membr. Biol. 187:85–96

    Article  CAS  Google Scholar 

  • Forster I.C., Loo D.D., Eskandari S. 1999. Stoichiometry and Na+ binding cooperativity of rat and flounder renal type II Na+-Pi cotransporters. Am. J. Physiol. 276:F644–F649

    PubMed  CAS  Google Scholar 

  • Forster I.C., Wagner C.A., Busch A.E., Lang F., Biber J., Hernando N., Murer H., Werner A. 1997. Electrophysiological characterization of the flounder type II Na+/Pi cotransporter (NaPi−5) expressed in Xenopus laevis oocytes. J. Membr. Biol. 160:9–25

    Article  PubMed  CAS  Google Scholar 

  • Frei P., Gao B., Hagenbuch B., Mate A., Biber J., Murer H., Meier P.J., Stieger B. 2005. Identification and localization of sodium-phosphate cotransporters in hepatocytes and cholangiocytes of rat liver. Am. J. Physiol. 288:G771–G778

    CAS  Google Scholar 

  • Graham C., Nalbant P., Scholermann B., Hentschel H., Kinne R.K., Werner A. 2003. Characterization of a type IIb sodium-phosphate cotransporter from zebrafish (Danio rerio) kidney. Am. J. Physiol. 284:F727–F736

    CAS  Google Scholar 

  • Gupta A., Tenenhouse H.S., Hoag H.M., Wang D., Khadeer M.A., Namba N., Feng X., Hruska K.A. 2001. Identification of the type II Na+-Pi cotransporter (Npt2) in the osteoclast and the skeletal phenotype of Npt2–/- mice. Bone 29:467–476

    Article  PubMed  CAS  Google Scholar 

  • Hartmann C.M., Wagner C.A., Busch A.E., Markovich D., Biber J., Lang F., Murer H. 1995. Transport characteristics of a murine renal Na/Pi-cotransporter. Pfluegers Arch. 430:830–836

    Article  CAS  Google Scholar 

  • Hediger M.A., Romero M.F., Peng J.B., Rolfs A., Takanaga H., Bruford E.A. 2004. The ABCs of solute carriers: Physiological, pathological and therapeutic implications of human membrane transport proteins. Introduction. Pfluegers Arch. 447:465–468

    Article  CAS  Google Scholar 

  • Hilfiker H., Hattenhauer O., Traebert M., Forster I., Murer H., Biber J. 1998. Characterization of a murine type II sodium-phosphate cotransporter expressed in mammalian small intestine. Proc. Natl. Acad. Sci. USA 95:14564–14569

    Article  PubMed  CAS  Google Scholar 

  • Hisano S., Haga H., Li Z., Tatsumi S., Miyamoto K.I., Takeda E., Fukui Y. 1997. Immunohistochemical and RT-PCR detection of Na+-dependent inorganic phosphate cotransporter (NaPi−2) in rat brain. Brain Res. 772:149–155

    Article  PubMed  CAS  Google Scholar 

  • Kohler K., Forster I.C., Stange G., Biber J., Murer H. 2002. Identification of functionally important sites in the first intracellular loop of the NaPi-IIa cotransporter. Am. J. Physiol. 282:F687–F696

    CAS  Google Scholar 

  • Krofchick D., Huntley S.A., Silverman M. 2004. Transition states of the high-affinity rabbit Na+/glucose cotransporter SGLT1 as determined from measurement and analysis of voltage-dependent charge movements. Am. J. Physiol. 287:C46–C54

    Article  CAS  Google Scholar 

  • Lambert G., Forster I.C., Stange G., Kohler K., Biber J., Murer H. 2001. Cysteine mutagenesis reveals novel structure-function features within the predicted third extracellular loop of the type IIa Na+/Pi cotransporter. J. Gen. Physiol. 117:533–546

    Article  PubMed  CAS  Google Scholar 

  • Mager S., Cao Y., Lester H.A. 1998. Measurement of transient currents from neurotransmitter transporters expressed in Xenopus oocytes. Methods Enzymol. 296:551–566

    Article  PubMed  CAS  Google Scholar 

  • Mager S., Naeve J., Quick M., Labarca C., Davidson N., Lester H.A. 1993. Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10:177–188

    Article  PubMed  CAS  Google Scholar 

  • Murer H., Forster I., Biber J. 2004. The sodium phosphate cotransporter family SLC34. Pfluegers Arch. 447:763–767

    Article  CAS  Google Scholar 

  • Murer H., Hernando N., Forster I., Biber J. 2000. Proximal tubular phosphate reabsorption: Molecular mechanisms. Physiol. Rev. 80:1373–1409

    PubMed  CAS  Google Scholar 

  • Nalbant P., Boehmer C., Dehmelt L., Wehner F., Werner A. 1999. Functional characterization of a Na+-phosphate cotransporter (NaPi-II) from zebrafish and identification of related transcripts. J. Physiol. 520:79–89

    Article  PubMed  CAS  Google Scholar 

  • Ohkido I., Segawa H., Yanagida R., Nakamura M., Miyamoto K. 2003. Cloning, gene structure and dietary regulation of the type-IIc Na/Pi cotransporter in the mouse kidney. Pfluegers Arch. 446:106–115

    CAS  Google Scholar 

  • Radanovic T., Murer H., Biber J. 2003. Expression of the Na/Pi-cotransporter type IIb in Sf9 cells: Functional characterization and purification. J. Membr. Biol. 194:91–96

    Article  PubMed  CAS  Google Scholar 

  • Radanovic T., Wagner C.A., Murer H., Biber J. 2005. Regulation of intestinal phosphate transport. I. Segmental expression and adaptation to low-Pi diet of the type IIb Na+-Pi cotransporter in mouse small intestine. Am. J. Physiol. 288:G496–G500

    CAS  Google Scholar 

  • Segawa H., Kaneko I., Takahashi A., Kuwahata M., Ito M., Ohkido I., Tatsumi S., Miyamoto K. 2002. Growth-related renal type II Na/Pi cotransporter. J. Biol. Chem. 277:19665–19672

    Article  PubMed  CAS  Google Scholar 

  • Virkki L.V., Forster I.C., Bacconi A., Biber J., Murer H. 2005a. Functionally important residues in the predicted 3rd transmembrane domain of the type IIa sodium-phosphate co-transporter (NaPi-IIa). J. Membr. Biol. 206:227–238

    Article  CAS  Google Scholar 

  • Virkki L.V., Forster I.C., Biber J., Murer H. 2005b. Substrate interactions in the human type IIa sodium-phosphate cotransporter (NaPi-IIa). Am. J. Physiol. 288:F969–F981

    Article  CAS  Google Scholar 

  • Virkki L.V., Murer H., Forster I.C. 2006. Voltage clamp fluorometric measurements on a type II Na+-coupled Pi cotransporter: Shedding light on substrate binding order. J. Gen. Physiol. 127:539–555

    Article  CAS  Google Scholar 

  • Virrki, L.V., Murer, N., Forster, I.C. 2006b. Mapping conformational changes of a type IIb Na+/Pi cotransporter by voltage clamp fluorometry. J. Biol. Chem. 281:28837–28849

    Article  CAS  Google Scholar 

  • Wadiche J.I., Arriza J.L., Amara S.G., Kavanaugh M.P. 1995. Kinetics of a human glutamate transporter. Neuron 14:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Werner A., Dehmelt L., Nalbant P. 1998. Na+-dependent phosphate cotransporters: The NaPi protein families. J. Exp. Biol. 201:3135–3142

    PubMed  CAS  Google Scholar 

  • Werner A., Kinne R.K. 2001. Evolution of the Na-Pi cotransport systems. Am. J. Physiol. 280:R301–R312

    CAS  Google Scholar 

  • Xu H., Inouye M., Missey T., Collins J.F., Ghishan F.K. 2002. Functional characterization of the human intestinal NaPi-IIb cotransporter in hamster fibroblasts and Xenopus oocytes. Biochim. Biophys. Acta 1567:97–105

    Article  PubMed  CAS  Google Scholar 

  • Xu Y., Yeung C.H., Setiawan I., Avram C., Biber J., Wagenfeld A., Lang F., Cooper T.G. 2003. Sodium-inorganic phosphate cotransporter NaPi-IIb in the epididymis and its potential role in male fertility studied in a transgenic mouse model. Biol. Reprod. 69:1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Zampighi G.A., Kreman M., Boorer K.J., Loo D.D., Bezanilla F., Chandy G., Hall J.E., Wright E.M. 1995. A method for determining the unitary functional capacity of cloned channels and transporters expressed in Xenopus laevis oocytes. J. Membr. Biol. 148:65–78

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by grants awarded to J. B. and H. M. from the Swiss National Science Foundation and to H. M. from the Gebert Rüf Foundation ( http://www.grstiftung.ch). We thank Gerti Stange for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian C. Forster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forster, I.C., Virkki, L., Bossi, E. et al. Electrogenic Kinetics of a Mammalian Intestinal Type IIb Na+/Pi Cotransporter. J Membrane Biol 212, 177–190 (2006). https://doi.org/10.1007/s00232-006-0016-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-006-0016-3

Keywords

Navigation