Skip to main content
Log in

In Vitro Effects of Cholesterol β-d-Glucoside, Cholesterol and Cycad Phytosterol Glucosides on Respiration and Reactive Oxygen Species Generation in Brain Mitochondria

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

The cluster of neurodegenerative disorders in the western Pacific termed amyotrophic lateral sclerosis–parkinsonism dementia complex (ALS-PDC) has been repeatedly linked to the use of seeds of various species of cycad. Identification and chemical synthesis of the most toxic compounds in the washed cycad seeds, a variant phytosteryl glucosides, and even more toxic cholesterol β-d-glucoside (CG), which is produced by the human parasite Helicobacter pylori, provide a possibility to study in vitro the mechanisms of toxicity of these compounds. We studied in detail the effects of CG on the respiratory activities and generation of reactive oxygen species (ROS) by nonsynaptic brain and heart mitochondria oxidizing various substrates. The stimulatory effects of CG on respiration and ROS generation showed strong substrate dependence, suggesting involvement of succinate dehydrogenase (complex II). Maximal effects on ROS production were observed with 1 μmol CG/1 mg mitochondria. At this concentration the cycad toxins β-sitosterol-β-d-glucoside and stigmasterol-β-d-glucoside had effects on respiration and ROS production similar to CG. However, poor solubility precluded full concentration analysis of these toxins. Cholesterol, stigmasterol and β-sitosterol had no effect on mitochondrial functions studied at concentrations up to 100 μmol/mg protein. Our results suggest that CG may influence mitochondrial functions through changes in the packing of the bulk membrane lipids, as was shown earlier by Deliconstantinos et al. (Biochem Cell Biol 67:16–24, 1989). The neurotoxic effects of phytosteryl glucosides and CG may be associated with increased oxidative damage of neurons. Unlike heart mitochondria, in activated neurons mitochondria specifically increase ROS production associated with succinate oxidation (Panov et al., J Biol Chem 284:14448–14456, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bastiaanse EM, Höld KM, van Der Laarse A (1997) The effect of membrane cholesterol content on ion transport processes in plasma. Cardiovasc Res 33:272–283

    Article  CAS  PubMed  Google Scholar 

  • Beal MF (2000) Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci 23:298–304

    Article  CAS  PubMed  Google Scholar 

  • Borenstein AR, Mortimer JA, Schofield E, Wu Y, Salmon DP, Gamst A, Olichey J, Thal LJ, Silbert L, Kaye J, Craig UL, Schellenberg GD, Glasko DR (2007) Cycad exposure and risk of dementia, MCI, and PDC in the Chamorro population of Guam. Neurology 68:1764–1771

    Article  CAS  PubMed  Google Scholar 

  • Crémel G, Filliol D, Jancsik V, Rendon A (1990) Cholesterol distribution in rat liver and brain mitochondria as determined by stopped-flow kinetics with filipin. Arch Biochem Biophys 278:142–147

    Article  PubMed  Google Scholar 

  • Deliconstantinos G, Kopeikina L, Villiotou V (1989) Evoked effects of cholesterol binding on integral proteins and lipid fluidity of dog brain synaptosomal plasma membranes. Biochem Cell Biol 67:16–24

    Article  CAS  PubMed  Google Scholar 

  • Goodall EF, Morrison KE (2006) Amyotrophic lateral sclerosis (motor neuron disease): proposed mechanisms and pathways to treatment. Expert Rev Mol Med 8:1–22

    Article  PubMed  Google Scholar 

  • Greenamyre JT, Sherer TB, Betarbet R, Panov AV (2001) Complex I and Parkinson’s disease. IUBMB Life 52:135–141

    Article  CAS  PubMed  Google Scholar 

  • Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133

    CAS  PubMed  Google Scholar 

  • Khabazian I, Bains JS, Williams DE et al (2002) Isolation of various forms of sterol beta-d-glucoside from the seed of Cycas circinalis: neurotoxicity and implications for ALS–parkinsonism dementia complex. J Neurochem 82:516–528

    Article  CAS  PubMed  Google Scholar 

  • Kopeikina-Tsiboukidou L, Deliconstantinos G (1983) Functional changes of rat brain mitochondrial enzymes induced by monomeric cholesterol. Int J Biochem 15:1403–1407

    Article  CAS  PubMed  Google Scholar 

  • Kunimoto S, Kobayashi T, Kobayashi S, Murakami-Murofushi K (2000) Expression of cholesteryl glucoside by heat shock in human fibroblasts. Cell Stress Chaperones 5:3–7

    Article  CAS  PubMed  Google Scholar 

  • Kunimoto S, Murofushi W, Kai H et al (2002) Steryl glucoside is a lipid mediator in stress-responsive signal transduction. Cell Struct Funct 27:157–162

    Article  CAS  PubMed  Google Scholar 

  • Ly PTT, Pelech S, Shaw CA (2008) Cholestryl glucoside stimulates activation of protein kinase B/Akt in motor neuron-derived NSC34 cell line. Neurol Lipids 7:4

    Google Scholar 

  • Madden TD, Vigo C, Bruckdorfer KR, Chapman D (1980) The incorporation of cholesterol into inner mitochondrial membranes and its effect on lipid phase transition. Biochim Biophys Acta 599:528–537

    Article  CAS  PubMed  Google Scholar 

  • Mitchell DC, Litman BJ (1998) Molecular order and dynamics in bilayers consisting of highly polyunsaturated phospholipids. Biophys J 74:879–891

    Article  CAS  PubMed  Google Scholar 

  • Panov AV, Scaduto RC (1995) Influence of calcium on NADH and succinate oxidation by rat heart submitochondrial particles. Arch Biochem Biophys 316:815–820

    Article  CAS  PubMed  Google Scholar 

  • Panov A, Andreeva L, Greenamyre JT (2004) Quantitative evaluation of the effects of mitochondrial permeability transition pore modifiers on accumulation of calcium phosphate: two modes of action of mPTP modifiers. Arch Biochem Biophys 424:44–52

    Article  CAS  PubMed  Google Scholar 

  • Panov A, Dikalov S, Shalbuyeva N, Hemendinger R, Greenamyre JT, Rosenfeld J (2007) Species and tissue specific relationships between mitochondrial permeability transition and generation of ROS in brain and liver mitochondria of rats and mice. Am J Physiol Cell Physiol 292:C708–C718

    Article  CAS  PubMed  Google Scholar 

  • Panov A, Schonfeld P, Dikalov S, Hemendinger R, Bonkovsky HL, Brooks BR (2009) The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria. J Biol Chem 284:14448–14456

    Article  CAS  PubMed  Google Scholar 

  • Petrik MS, Wilson JMB, Grant SC et al (2007) Magnetic resonance microscopy and immunohistochemistry of the CNS of the mutant SOD murine model of ALS reveals widespread neural deficits. Neurol Med 9:216–229

    Article  CAS  Google Scholar 

  • Ruggiero FM, Cafagna F, Petruzzella V et al (1992) Lipid composition in synaptic and nonsynaptic mitochondria from rat brains and effect of aging. J Neurochem 59:487–491

    Article  CAS  PubMed  Google Scholar 

  • Schneider H, Hochli M, Hackenbrock CR (1982) Relationship between the density distribution of intramembrane particles and electron transfer in the mitochondrial inner membrane as revealed by cholesterol incorporation. J Cell Biol 94:387–393

    Article  CAS  PubMed  Google Scholar 

  • Schulz JD, Hawkes EL, Shaw CA (2006) Cycad toxins, Helicobacter pylori and parkinsonism: cholesterol glucosides as the common denominator. Med Hypotheses 66:1222–1226

    Article  CAS  PubMed  Google Scholar 

  • Seelig A, Allegrini PR, Seelig J (1988) Partitioning of local anesthetics into membranes: surface charge effects monitored by the phospholipid head-group. Biochim Biophys Acta 939:267–276

    Article  CAS  PubMed  Google Scholar 

  • Sims NR (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J Neurochem 55:698–707

    Article  CAS  PubMed  Google Scholar 

  • Smith LL, Johnson BH (1989) Biological activities of oxysterols. Free Radic Biol Med 7:285–332

    Article  CAS  PubMed  Google Scholar 

  • Tabata RC, Wilson JM, Ly P et al (2008) Chronic exposure to dietary sterol glucosides is neurotoxic to motor neurons and induces an ALS-PDC phenotype. Neuromol Med 10:24–39

    Article  CAS  Google Scholar 

  • Tannaes T, Grav HJ, Bukholm G (2000) Lipid profiles of Helicobacter pylori colony variants. APMIS 108:349–356

    Article  CAS  PubMed  Google Scholar 

  • Vatassery GT, Quach HT, Smith WE, Ungar F (1997) Oxidation of cholesterol in synaptosomes and mitochondria isolated from rat brains. Lipids 32:879–886

    Article  CAS  PubMed  Google Scholar 

  • Whiting MG (1963) Toxicity of cycads. Econ Bot 17:271–302

    CAS  Google Scholar 

  • Wilson JM, Khabazian I, Wong MC et al (2002) Behavioral and neurological correlates of ALS–parkinsonism dementia complex in adult mice fed washed cycad flour. Neuromol Med 1:207–221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Carolinas HealthCare Foundation and Carolinas ALS Research Fund for financial support of this study. Part of this project was supported by NIH grant 5R01NS051723 (to C. A. S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Panov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panov, A., Kubalik, N., Brooks, B.R. et al. In Vitro Effects of Cholesterol β-d-Glucoside, Cholesterol and Cycad Phytosterol Glucosides on Respiration and Reactive Oxygen Species Generation in Brain Mitochondria. J Membrane Biol 237, 71–77 (2010). https://doi.org/10.1007/s00232-010-9307-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-010-9307-9

Keywords

Navigation