Skip to main content
Log in

Permeability of the Blood–Brain Barrier: Molecular Mechanism of Transport of Drugs and Physiologically Important Compounds

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

A new molecular model for the permeability of drugs and other physiologically important compounds to cross the blood–brain barrier has been developed. Permeability (log PS) is dependant on desolvation, lipophilicity, molecular volume and dipole moment. Previous models for BBB permeability have not considered desolvation and dipole moment as critical factors. The model applies to passive diffusion processes, and some facilitated diffusion processes. Passive permeability models may not apply to active transport processes, where complex membrane protein binding processes (e.g. stereoselectivity) are involved. Model phosphatidylcholine lipid bilayer membranes have been used to evaluate how charged or polar neutral compounds can interact through their molecular dipoles with the cell membrane to induce electromechanical changes in the cell membrane which facilitate permeation. The free energy of solvation in n-octanol has been shown to be a good measure of membrane lipophilicity by calculating the solvation free energy of a model PC lipid membrane in a series of closely related alcohols. The passive diffusion model for alcohols correlates with the known modulation of membrane bilayers which showed a size-dependent “cut-off” point in potency. For most drugs and related molecules, the neutral species are the permeating species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BBB:

Blood–brain barrier

CNS:

Central nervous system

Log PS :

Log value of permeability surface area

QSAR:

Quantitative structure–activity relationships

PC:

Phosphatidylcholine

DPPC:

Dipalmitotylphosphatidylcholine

DPHYPC:

Diphytanoylphosphatidylcholine

POPC:

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine

DLPC:

Dilauroyl phosphatidylcholine

DOPSE:

1,2-Dioleoyl phosphatidylserine

QM:

Quantum mechanics

PSA:

Molecular polar surface area

ΔG water :

Water desolvation free energy

ΔG octanol :

Solvation free energy in n-octanol, or lipophilicity

V :

Molecular volume in n-octanol

D :

Dipole moment in water

SEE:

Standard error of the estimate (log PS)

R 2 :

Regression correlation coefficient

References

  • Aagaard TH, Kristensen MN, Westh P (2006) Packing properties of 1-alkanols and alkanes in a phospholipid membrane. Biophys Chem 119:61

    Article  CAS  PubMed  Google Scholar 

  • Abraham MH, Takacs K, Novak A, Mitchell RC (1997) On the partition of ampholytes: Application to blood-brain distribution. J Pharm Sci 86:310–315

    Article  CAS  PubMed  Google Scholar 

  • Ingólfsson HI, Andersen OS (2011) Alcohol’s effects on lipid bilayer properties. Biophys J 101:847–855

    Article  PubMed Central  PubMed  Google Scholar 

  • Balaz S (2009) Modelling kinetics of subcellular disposition of chemicals. Chem Revs 109:1753–1899

    Article  Google Scholar 

  • Banks WA (2009) Characteristic of compounds that cross the blood-brain barrier. BMC Neurol 9(Suppl 1):S3

    Article  PubMed Central  PubMed  Google Scholar 

  • Barraud de Lagerie S, Comets E, Gautrand C, Fernandez C, Auchere D, Singlas E, Mentre F, Gimenez F (2004) Cerebral uptake of mefloquine enantiomers with and without the P-gp inhibitor elacridar (GF1210918) in mice. Br J Pharmacol 141:1214–1222

    Article  PubMed  Google Scholar 

  • Bezanilla F (2008) How membrane proteins sense voltage. Nat Rev Mol Cell Biol 9:323–332

    Article  CAS  PubMed  Google Scholar 

  • Cafiso DS (1995) Influence of charges and dipoles on macromolecular adsorption and permeability, Ch. 9. In: Disalvo EA, Simon SA (eds) Permeability and stability of lipid bilayers. CRC Press, Boca Raton

    Google Scholar 

  • Carpenter TS, Kirshner DA, Lau EY, Wong SE, Nilmeier JP, Lightstone FC (2014) A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophys J 107:630–641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cattelotte J, Tournier N et al (2009) Changes in dipole potential at the mouse blood-brain barrier enhance the transport of technetium sestamibi. J Neurochem 108:767–775

    Article  CAS  PubMed  Google Scholar 

  • Chew CF, Guy A, Biggin PC (2008) Distribution and dynamics of adamantanes in a lipid bilayer. Biophys J 95:5627–5636

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiou JS, Kuo CC, Lin SH, Kamaya H, Ueda I (1991) Interfacial dehydration by alcohols: hydrogen bonding of alcohols to phospholipids. Alcohol 8:143–150

    Article  CAS  PubMed  Google Scholar 

  • Ding Y et al (2004) Brain kinetics of methylphenidate (Ritalin) enantiomers after oral administration. Synapse 53:168–175

    Article  CAS  PubMed  Google Scholar 

  • Fischer H, Gottschlich R, Seelig A (1998) Blood-brain barrier permeation: molecular parameters governing passive diffusion. J Membr Biol 165:201

    Article  CAS  PubMed  Google Scholar 

  • Fong CW (2014) Statins in therapy: understanding their hydrophilicity, lipophilicity, binding to 3-hydroxy-3-methylglutaryl-CoA reductase, ability to cross the blood brain barrier and metabolic stability based on electrostatic molecular orbital studies. Eur J Med Chem 85:661–674

    Article  CAS  PubMed  Google Scholar 

  • Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurol Dis 37:48–57

    CAS  Google Scholar 

  • Garg P, Verma J, Roy N (2008) In silico modelling of blood-brain barrier permeability predictions, in drug absorption studies. Biotechnol Pharm Asp AAPS 7:510

    Article  CAS  Google Scholar 

  • Goodwin JT, Clark DE (2005) In silico prediction of blood-brain barrier penetration. J Pharmacol Exp Ther 315:477–483

    Article  CAS  PubMed  Google Scholar 

  • Gratton JA, Abraham MH, Bradbury MW, Chadha HS (1997) Molecular factors influencing drug transfer across the blood-brain barrier. J Pharm Pharmacol 49:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Habgood MD, Knott GW, Dziegielewska KM, Saunders NR (1998) Permeability of the developing and mature blood-brain barriers to theophylline in rats. Clin Exp Pharmacol Physiol 25:361–368

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Viña JR (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 14:218S–226S

    Google Scholar 

  • Heimburg T (2012) The capacitance and electromechanical coupling of lipid membranes close to transitions: the effect of electrostriction. Biophys J 103:918–929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ho C, Williams BW, Kelly MB, Stubbs CD (1994) Chronic ethanol intoxication induces adaptive changes at the membrane protein/lipid interface. Biochimica et Biophysica Acta 1189:135–142

    Article  CAS  PubMed  Google Scholar 

  • Hutt AJ (2006) Drug chirality and its pharmacological consequences. In: JohnSmith H, Williams H (eds) Introduction to the principles of drug design and action, 4th edn. CRC Press, Boca Raton

    Google Scholar 

  • Jenkins AJ (2008) Pharmacokinetics of specific drugs. In: Karch SB (ed) Pharmacokinetics and pharmacodynamics of abused drugs. CRC Press, Boca Raton

    Google Scholar 

  • Jouyban A, Soltani S (2012) Blood brain barrier permeation, in toxicity and drug testing. In: Acree W (ed) Intech. Instrument Society of America, Pittsburgh

    Google Scholar 

  • Kaznessis YN (2005) A review of method for predicting blood-brain partitioning. Curr Med Chem 5:1

    Article  Google Scholar 

  • Keseru GM, Molnar L (2001) High-throughput prediction of blood-brain partitioning: a thermodynamic approach. J Chem Inf Comput Sci 41:120–128

    Article  CAS  PubMed  Google Scholar 

  • Koerner MM, Palacio LA, Wright JW, Schweitzer KS, Ray BD, Petrache HI (2011) Electrodynamics of lipid membrane interactions in the presence of zwitterionic buffers. Biophys J 101:362–369

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu X et al (2005) Use of a physiologically based pharmacokinetic model to study the time to reach brain equilibrium: an experimental analysis of the role of blood-brain barrier permeability, plasma protein binding, and brain tissue binding. J Pharmacol Exp Therapeut 313:1254–1262

    Article  CAS  Google Scholar 

  • Liu X, Tu M, Kelly RS, Chen C, Smith BJ (2004a) Development of a computational approach to predict blood-brain barrier permeability. Drug Metab Dispos 32:132–139

    Article  CAS  PubMed  Google Scholar 

  • Lombardo F, Blake JF, Curatolo WJ (1996) Computation of brain-blood partitioning of organic solutes via free energy calculations. J Med Chem 39:4750–4755

    Article  CAS  PubMed  Google Scholar 

  • Lyon RC, McComb JA (1981) Schreurs J. Goldstein DB. A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols. J Pharmacol Exp Ther 218:669–675

    CAS  PubMed  Google Scholar 

  • Mangas-Sanjuan V, González-Alvarez M, Gonzalez-Alvarez I, Bermejo M (2010) Drug penetration across the blood-brain barrier: an overview. Therapeut Deliv 1:1

    Article  Google Scholar 

  • Marenich AV, Cramer CJ, Truhlar DJ (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Zipse H (2005) Charge distribution in the water molecule—a comparison of methods. J Comp Chem 26:97–105

    Article  CAS  Google Scholar 

  • McAllister MS et al (2001) Mechanisms of glucose transport at the blood–brain barrier. Brain Res 409:20

    Article  Google Scholar 

  • McCaffrey G, Davis TP (2012) Physiology and pathophysiology of the blood-brain barrier: p-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery. J Invest Med 60:1

    Google Scholar 

  • McCall AL, Millington WR, Wurtman RJ (1982) Blood-brain barrier transport of caffeine. Life Sci 31:2709–2715

    Article  CAS  PubMed  Google Scholar 

  • McCreery MJ, Hunt WA (1978) Physico-chemical correlates of alcohol intoxication. Neuropharmacology 17:451–461

    Article  CAS  PubMed  Google Scholar 

  • McKarns SC, Hansch C, Caldwell WS, Morgan WT, Moore SK, Doolittle DJ (1997) Correlation between hydrophobicity of short-chain aliphatic alcohols and their ability to alter plasma membrane integrity. Fundam Appl Toxicol 36:62–70

    Article  CAS  PubMed  Google Scholar 

  • Mehdipour AR, Hamidi M (2009) Brain drug targeting: a computational approach to overcoming blood-brain barrier. Drug Discov Today 14:1030–1036

    Article  CAS  PubMed  Google Scholar 

  • Nau R, Sorgel F, Eiffert H (2010) Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 23:858–883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oldendorf WH, Szabo J (1976) Amino acid assignment to one of three blood-brain barrier amino acid carrier. Am J Physiol 230:94–98

    CAS  PubMed  Google Scholar 

  • Oldendorf WH, Hyman S, Braun L, Oldendorf SZ (1972) Blood-brain barrier: penetration of morphine, codeine, heroin, and methadone after carotid injection, Science 178: 984–986. Log PS calculated from Oldendorf’s results for heroin, codeine and methadone based on morphine (-2.7, ref 15) as a base are -0.7, -1.15 and -0.9 respectively

  • Oldendorf WH, Braun L, Cornford E (1979) pH dependence of blood-brain permeability to lactate and nicotine. Stroke 10:577–581

    Article  CAS  PubMed  Google Scholar 

  • Oldendorf WH, Stoller BE, Harris FL (1993) Blood-brain penetration abolished by N-methyl quaternization of nicotine. PNAS 90:307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pajouhesh H, Lenz GR (2005) Medicinal chemical properties of successful central nervous system drugs. J Am Soc Exp Neuro Therapeut 2:541

    Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cerebral Blood Flow Metabol 32:1959–1972

    Article  CAS  Google Scholar 

  • Pardridge WM (2007) Blood-brain barrier delivery. Drug Discov Today 12:54–61

    Article  CAS  PubMed  Google Scholar 

  • Peterson U, Mannock DA, Ruthven L, Pohl P, McElhaney RN, Pohl EE (2002) Origin of membrane dipole potential: contribution of the phospholipid fatty acid chains. Chem Phys Lipids 117:19

    Article  CAS  PubMed  Google Scholar 

  • Rayne S, Forest K (2010) Accuracy of computational solvation free energies for neutral and ionic compounds: dependence on level of theory and solvent model. Nature Proceedings http://dx.doi.org/10.1038/npre.2010.4864.1

  • Smith QR (2000) Transport of glutamate and other amino acids at the blood-brain barrier. J Nutr 130:1016S–1022S

    CAS  PubMed  Google Scholar 

  • Spector R (1987) Hypoxanthine transport through the blood-brain barrier. Neurochem Res 12:791–796

    Article  CAS  PubMed  Google Scholar 

  • Spector R (1988) Myo-inositol transport across the blood-brain barrier. Neurochem Res 13:785–787

    Article  CAS  PubMed  Google Scholar 

  • Stowasser C (2008) The dipole potential of lipid membranes—an overview. http://www.membranes.nbi.dk/thesis-pdf/2008_ProjectReport_C.Stowasser.pdf

  • Suenderhauf C, Hammann F, Huwyler J (2012) Computational prediction of blood-brain barrier permeability using decision tree induction. Molecules 17:10429–10445

    Article  CAS  PubMed  Google Scholar 

  • Torres EG, Raul R, Gainetdinov MG, Caron G (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13

    Article  CAS  PubMed  Google Scholar 

  • Trauble H (1971) The movement of free molecules across lipid membranes: a molecular theory. J Membr Biol 4:193–208

    Article  CAS  PubMed  Google Scholar 

  • van Bree J et al (1991) Stereoselective transport of Baclofen across the blood-brain barrier in rats as determined by the unit impulse response method. Pharm Res 8:259–262

    Article  PubMed  Google Scholar 

  • Vilar S, Chakrabarti M, Costanzi S (2010) Prediction of passive blood-brain partitioning: straightforward and effective classification models based on in silico derived physicochemical descriptors. J Mol Graph Model 28:899–903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walter A, Gutknecht J (1986) Permeability of small nonelectrolytes through lipid bilayer membranes. J Membr Biol 90:207–217

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Kang Y, Bickel U, Pardridge WM (1997) Blood-brain barrier permeability to morphine-6-glucuronide is markedly reduced compared with morphine. Drug Metab Dispos 25:768–771

    CAS  PubMed  Google Scholar 

  • Kubelka J Population Analysis, www.uwyo.edu/kubelka-chem/population_analysis.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford W. Fong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fong, C.W. Permeability of the Blood–Brain Barrier: Molecular Mechanism of Transport of Drugs and Physiologically Important Compounds. J Membrane Biol 248, 651–669 (2015). https://doi.org/10.1007/s00232-015-9778-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-015-9778-9

Keywords

Navigation