Skip to main content
Log in

Randall’s plaque as the origin of calcium oxalate kidney stones

  • Invited Review
  • Published:
Urolithiasis Aims and scope Submit manuscript

Abstract

Eight decades ago, Al exander Randall identified calcium phosphate deposits at the tip of renal papillae as the origin of renal calculi. The awareness that these “Randall’s plaque” promote renal stone formation has been amplified during the past years by the development of endoscopic procedures allowing the in situ visualization of these plaques. Recent studies based upon kidney biopsies evidenced that apatite deposits at the origin of these plaque originate from the basement membranes of thin loops of Henle and then spread in the surrounding interstitium. In addition, scanning electron microscopy examination of calcium oxalate stones developed on Randall’s plaque evidenced that plaque may also be made of tubules obstructed by calcium phosphate plugs. Hypercalciuria has been associated to Randall’s plaque formation. However, several additional mechanisms may be involved resulting in increased tissular calcium phosphate supersaturation and the role of macromolecules in plaque formation remains elusive. At last, apatite crystals are the main mineral phase identified in plaques, but other calcium phosphates and various chemical species such as purines have been evidenced, revealing thereby that several mechanisms may be responsible for plaque formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Curhan GC (2007) Epidemiology of stone disease. Urol Clin North Am 34:287–293

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ansari MS, Gupta NP, Hemal AK, Dogra PN, Seth A, Aron M, Singh TP (2005) Spectrum of stone composition: structural analysis of 1050 upper urinary tract calculi from northern India. Int J Urol 12(1):12–16

    Article  PubMed  Google Scholar 

  3. Denstedt JD, Fuller A (2012) Epidemiology of stone disease in North America. In: Talati JJ, Tiselius HG, Albala DM, Ye Z (eds) Urolithiasis: basic science and clinical practice. Springer, London, pp 13–20

    Chapter  Google Scholar 

  4. Hesse A, Brandle E, Wilbert D, Kohrmann KU, Alken P (2003) Study on the prevalence and incidence of urolithiasis in Germany comparing the years 1979 vs. 2000. Eur Urol 44:709–713

    Article  CAS  PubMed  Google Scholar 

  5. Trinchieri A (2006) Epidemiological trends in urolithiasis: impact on our health care systems. Urol Res 34:151–156

    Article  PubMed  Google Scholar 

  6. Ogawa Y (2012) Epidemiology of stone disease over a 40-year period in Japan. In: Talati JJ, Tiselius HG, Albala DM, Ye Z (eds) Urolithiasis: basic science and clinical practice. Springer, London, pp 89–96

    Chapter  Google Scholar 

  7. Siener R (2006) Impact of dietary habits on stone incidence. Urol Res 34:131–133

    Article  CAS  PubMed  Google Scholar 

  8. Asselman M, Verkoelen CF (2008) Fructose intake as a risk factor for kidney stone disease. Kidney Int 73:139–140

    Article  CAS  PubMed  Google Scholar 

  9. Taylor EN, Fung TT, Curhan GC (2009) DASH-style diet associates with reduced risk for kidney stones. J Am Soc Nephrol 20:2253–2259

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Evan AP, Lingeman JE, Coe FL et al (2003) Randall’s plaque of patients with nephrolithiasis begins in basement membranes of thin loop of Henle. J Clin Invest 111:607–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Evan AP, Coe FL, Lingeman JE et al (2007) Mechanism of formation of human calcium oxalate renal stones on Randall’s plaque. Anat Rec (Hoboken) 290:1315–1323

    Article  CAS  Google Scholar 

  12. Evan AP, Lingeman JE, Worcester EM, et al. Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones. Anat Rec (Hoboken). 2014 Jan 30. doi:10.1002/ar.22881. [Epub ahead of print]

  13. Randall A (1936) An hypothesis for the origin of renal calculus. N Engl J Med 214:234–237

    Article  Google Scholar 

  14. Randall A (1937) The origin and growth of renal calculi. Ann Surg 105:1009–1027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rosenow EC Jr (1940) Renal calculi: study of papillary calcification. J Urol 44:19–28

    Google Scholar 

  16. Anderson WAD (1940) Renal calcification in adults. J Urol 44:29–34

    Google Scholar 

  17. Vermooten V (1941) The incidence and significance of the deposition of calcium plaques in the renal papilla as observed in the Caucasian and Bantu population in South Africa. J Urol 46:193–196

    CAS  Google Scholar 

  18. Vermooten V (1942) Origin and development in renal papilla of Randall’s calcium plaques. J Urol 48:27–37

    CAS  Google Scholar 

  19. Cifuentes-Delatte L, Minon-Cifuentes J, Medina JA (1987) New studies on papillary calculi. J Urol 137:1024–1029

    CAS  PubMed  Google Scholar 

  20. Cifuentes-Delatte L, Minon-Cifuentes JL, Medina JA (1985) Papillary stones: calcified renal tubules in Randall’s plaques. J Urol 133:490–494

    CAS  PubMed  Google Scholar 

  21. Daudon M, Traxer O, Jungers P, Bazin D. Stone morphology suggestive of Randall’s plaque. In: Evan AP, Lingeman JE, Williams JC Jr (eds): Renal stone disease. American Institute of Physics Conference Proceedings, Melville, New York, 2007, vol 900, pp. 2634

  22. Low RK, Stoller ML (1997) Endoscopic mapping of renal papillae for Randall’s plaques in patients with urinary stone disease. J Urol 158:2062–2064

    Article  CAS  PubMed  Google Scholar 

  23. Matlaga BR, Williams JC Jr, Kim SC et al (2006) Endoscopic evidence of calculus attachment to Randall’s plaque. J Urol 175:1720–1724

    Article  PubMed  Google Scholar 

  24. Ruggera L, Chiodini S, Gambaro G, et al. (2008) Does Randall’s plaque represent a necessary condition in the pathogenesis of the idiopathic calcium oxalate stones? In: Abstracts of the 11th international symposium on urolithiasi, Nice, 2–5 September 2008. Urol Res, vol 36, pp 162–163 (A)

  25. Carpentier X, Daudon M, Bazin D, Traxer O (2009) Plaques de Randall: fréquence, topographie et classification. Sémin Urol Néphrol 35:86–90

    Google Scholar 

  26. Daudon M, Traxer O, Williams JC, Bazin DC (2011) Randall’s plaques. In: Rao PN, Preminger GM, Kavanagh JP (eds) Urinary tract stone disease. Springer, London, pp 103–112

    Google Scholar 

  27. Daudon M (2005) Épidémiologie actuelle de la lithiase rénale en France. Ann Urol 39:209–231

    Article  CAS  Google Scholar 

  28. Kuo RL, Lingeman JE, Evan AP et al (2003) Urine calcium and volume predict coverage of renal papilla by Randall’s plaque. Kidney Int 64:2150–2154

    Article  PubMed  Google Scholar 

  29. Kim SC, Coe FL, Tinmouth WW et al (2005) Stone formation is proportional to papillary surface coverage by Randall’s plaque. J Urol 173:117–119

    Article  CAS  PubMed  Google Scholar 

  30. Curhan GC, Willett WC, Speizer FE, Stampfer MJ (2001) Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int 59:2290–2298

    CAS  PubMed  Google Scholar 

  31. Bushinsky DA (2003) Nephrolithiasis: site of the initial solid phase. J Clin Invest 111:602–605

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Asplin JR, Mandel NS, Coe FL (1996) Evidence of calcium phosphate supersaturation in the loop of Henle. Am J Physiol 270:F604–F613

    CAS  PubMed  Google Scholar 

  33. Lieske JC, Norris R, Swift H, Toback FG (1997) Adhesion, internalization and metabolism of calcium oxalate monohydrate crystals by renal epithelial cells. Kidney Int 52:1291–1301

    Article  CAS  PubMed  Google Scholar 

  34. Tiselius HG (2013) The role of calcium phosphate in the development of Randall’s plaques. Urolithiasis 41:369–377

    Article  CAS  PubMed  Google Scholar 

  35. Worcester EM, Coe FL, Evan AP et al (2008) Evidence for increased postprandial distal nephron calcium delivery in hypercalciuric stone forming patients. Am J Physiol Renal Physiol 295:F1286–F1294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Hansell P, Goransson V, Odlind C, Gerdin B, Hallgren R (2000) Hyaluronan content in the kidney in different states of body hydration. Kidney Int 58:2061–2068

    Article  CAS  PubMed  Google Scholar 

  37. Smith LH, Werness PG (1983) Hydroxyapatite—the forgotten crystal in calcium urolithiasis. Trans Am Clin Chem Assoc 95:183–190

    Google Scholar 

  38. Sethmann I, Grohe B, Kleebe HJ (2014) Replacement of hydroxylapatite by whewellite: implications for kidney-stone formation. Mineral Mag 78:91–100

    Article  CAS  Google Scholar 

  39. Miller NL, Williams JC Jr, Evan AP et al (2010) In idiopathic calcium oxalate stone-formers, unattached stones show evidence of having originated as attached stones on Randall’s plaque. BJU Int 105:242–245

    Article  PubMed Central  PubMed  Google Scholar 

  40. Carpentier X, Bazin D, Jungers P, Reguer S, Thiaudière D, Daudon M (2010) The pathogenesis of Randall’s plaque: a papilla cartography of Ca compounds through an ex vivo investigation based on XANES spectroscopy. J Synchrotron Radiat 17:374–379

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Daudon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daudon, M., Bazin, D. & Letavernier, E. Randall’s plaque as the origin of calcium oxalate kidney stones. Urolithiasis 43 (Suppl 1), 5–11 (2015). https://doi.org/10.1007/s00240-014-0703-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-014-0703-y

Keywords

Navigation