Skip to main content

Advertisement

Log in

Depleted Uranium Disturbs Immune Parameters in Zebrafish, Danio rerio: An Ex Vivo/In Vivo Experiment

  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of depleted uranium (DU), the byproduct of nuclear enrichment of uranium, on several parameters related to defence system in the zebrafish, Danio rerio, using flow cytometry. Several immune cellular parameters were followed on kidney leucocytes: cell proportion, cell mortality, phagocytosis activity and associated oxidative burst and lysosomal membrane integrity (LMI). Effects of DU were tested ex vivo after 17 h of contact between DU and freshly isolated leucocytes from 0 to 500 µg DU/L. Moreover, adult zebrafish were exposed in vivo during 3 days at 20 and 250 µg DU/L. Oxidative burst results showed that DU increased reactive oxygen species (ROS) basal level and therefore reduced ROS stimulation index in both ex vivo and in vivo experiments. ROS PMA-stimulated level was also increased at 250 µg DU/L in vivo only. Furthermore, a decrease of LMI was detected after in vivo experiments. Cell mortality was also decreased at 20 µg DU/L in ex vivo experiment. However, phagocytosis activity was not modified in both ex vivo and in vivo experiments. A reduction of immune-related parameters was demonstrated in zebrafish exposed to DU. DU could therefore decrease the ability of fish to stimulate its own immune system which could, in turn, enhance the susceptibility of fish to infection. These results encourage the development and the use of innate immune analysis by flow cytometry in order to understand the effects of DU and more generally radionuclides on fish immune system and response to infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Antunes SC, de Figueiredo DR, Marques SM, Castro BB, Pereira R, Goncalves F (2007) Evaluation of water column and sediment toxicity from an abandoned uranium mine using a battery of bioassays. Sci Total Environ 374:252–259

    Article  CAS  Google Scholar 

  • Bado-Nilles A, Quentel C, Thomas-Guyon H, Le Floch S (2009) Effects of two oils and 16 pure polycyclic aromatic hydrocarbons on plasmatic immune parameters in the European sea bass, Dicentrarchus labrax (Linné). Toxicol In Vitro 23:235–241

    Article  CAS  Google Scholar 

  • Bado-Nilles A, Betoulle S, Geffard A, Porcher JM, Gagnaire B, Sanchez W (2013) Flow cytometry detection of lysosomal presence and lysosomal membrane integrity in the three-spined stickleback (Gasterosteus aculeatus L.) immune cells: applications in environmental aquatic immunotoxicology. Environ Sci Pollut Res 20:2692–2704

    Article  CAS  Google Scholar 

  • Barillet S, Adam C, Palluel O, Devaux A (2007) Bioaccumulation, oxidative stress, and neurotoxicity in Danio rerio exposed to different isotopic compositions of uranium. Environ Toxicol Chem 26:497–505

    Article  CAS  Google Scholar 

  • Barillet S, Adam-Guillermin C, Palluel O, Porcher JM, Devaux A (2011) Uranium bioaccumulation and biological disorders induced in zebrafish (Danio rerio) after a depleted uranium waterborne exposure. Environ Pollut 159:495–502

    Article  CAS  Google Scholar 

  • Berry JP (1996) The role of lysosomes in the selective concentration of mineral elements. A microanalytical study. Cell Mol Biol 42:395–411

    CAS  Google Scholar 

  • Bols NC, Brubacher JL, Ganassin RC, Lee LE (2001) Ecotoxicology and innate immunity in fish. Dev Comp Immunol 25:853–873

    Article  CAS  Google Scholar 

  • Bonin B, Blanc PL (2001) L’uranium dans le milieu naturel, des origines jusqu’à la mine. In: Métivier H (ed) L’uranium de l’environnement à l’homme. EDP Sciences, Les Ulis, pp 7–41

    Google Scholar 

  • Briner W, Murray J (2005) Effects of short-term and long-term depleted uranium exposure on open-field behavior and brain lipid oxidation in rats. Neurotoxicol Teratol 27:135–144

    Article  CAS  Google Scholar 

  • Buet A, Barillet S, Camilleri V (2005) Changes in oxidative stress parameters in fish as response to direct uranium exposure. Radioprotection 40:151–155

    Article  Google Scholar 

  • Cambier S, Gonzalez P, Durrieu G, Bourdineaud J-P (2010) Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicol Environ Saf 73:312–319

    Article  CAS  Google Scholar 

  • Chassard-Bouchaud C, Calmet D, Escaig F, Kleinbauer F (1983) Bioaccumulation of uranium by mussels, Mytilus edulis (L.) collected from the French coasts of the Channel and experimental contamination. Microanalysis by secondary ionic emission. C R de l’Acad des Sci Sér III 296:1095–1100

    CAS  Google Scholar 

  • Chilmonczyk S, Monge D (1999) Flow cytometry as a tool for assessment of the fish cellular immune response to pathogens. Fish Shellfish Immunol 9:319–333

    Article  Google Scholar 

  • Colosio C, Birindelli S, Corsini E, Galli CL, Maroni M (2005) Low level exposure to chemicals and immune system. Toxicol Appl Pharmacol 207:320–328

    Article  CAS  Google Scholar 

  • Cooley HM, Evans RE, Klaverkamp JF (2000) Toxicology of dietary uranium in lake whitefish (Coregonus clupeaformis). Aquat Toxicol 48:495–515

    Article  CAS  Google Scholar 

  • Denison FH, Garnier-Laplace J (2005) The effects of database parameter uncertainty on uranium(VI) equilibrium calculations. Geochim Cosmochim Acta 69:2183–2191

    Article  CAS  Google Scholar 

  • Dublineau I, Grison S, Grandcolas L, Baudelin C, Tessier C, Suhard D, Frelon S, Cossonnet C, Claraz M, Ritt J, Paquet P, Voisin P, Gourmelon P (2006a) Absorption, accumulation and biological effects of depleted uranium in Peyer’s patches of rats. Toxicology 227:227–239

    Article  CAS  Google Scholar 

  • Dublineau I, Grison S, Linard C, Baudelin C, Dudoignon N, Souidi M, Marquette C, Paquet F, Aigueperse J, Gourmelon P (2006b) Short-term effects of depleted uranium on immune status in rat intestine. J Toxicol Environ Health Part A 69:1613–1628

    Article  CAS  Google Scholar 

  • Dublineau I, Grandcolas L, Grison S, Baudelin C, Paquet F, Voisin P, Aigueperse J, Gourmelon P (2007) Modifications of inflammatory pathways in rat intestine following chronic ingestion of depleted uranium. Toxicol Sci 98:458–468

    Article  CAS  Google Scholar 

  • Ellis AE (2001) Innate host defense mechanisms of fish against viruses and bacteria. Dev Comp Immunol 25:827–839

    Article  CAS  Google Scholar 

  • Ercal N, Gurer-Orhan H, Aykin-Burns N (2001) Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem 1:529–539

    Article  CAS  Google Scholar 

  • Gagnaire B, Thomas-Guyon H, Burgeot T, Renault T (2006) Pollutant effects on Pacific oyster, Crassostrea gigas (Thunberg), hemocytes: screening of 23 molecules using flow cytometry. Cell Biol Toxicol 22:1–14

    Article  CAS  Google Scholar 

  • Gagnaire B, Cavalie I, Camilleri V, Adam-Guillermin C (2013) Effects of depleted uranium on oxidative stress, detoxification, and defence parameters of zebrafish danio rerio. Arch Environ Contam Toxicol 64:140–150

    Article  CAS  Google Scholar 

  • Gerbron M, Geraudie P, Rotchell J, Minier C (2010) A new in vitro screening bioassay for the ecotoxicological evaluation of the estrogenic responses of environmental chemicals using roach (Rutilus rutilus) liver explant culture. Environ Toxicol 25:510–516

    Article  CAS  Google Scholar 

  • Giovanetti A, Fesenko S, Cozzella ML, Asencio LD, Sansone U (2010) Bioaccumulation and biological effects in the earthworm Eisenia fetida exposed to natural and depleted uranium. J Environ Radioact 101:509–516

    Article  CAS  Google Scholar 

  • Goedken M, De Guise S (2004) Flow cytometry as a tool to quantify oyster defence mechanisms. Fish Shellfish Immunol 16:539–552

    Article  CAS  Google Scholar 

  • Gori T, Mnzel T (2012) Biological effects of low-dose radiation: of harm and hormesis. Eur Heart J 33:292–295

    Article  Google Scholar 

  • Gouget B (2011) Uranium: toxicity to renal cells and osteoblasts. In: Jerome ON (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 534–540

    Chapter  Google Scholar 

  • Grundy MM, Moore MN, Howell SM, Ratcliffe NA (1996) Phagocytic reduction and effects on lysosomal membranes by polycyclic aromatic hydrocarbons, in haemocytes of Mytilus edulis. Aquat Toxicol 34:273–290

    Article  CAS  Google Scholar 

  • Harford AJ, O’Halloran K, Wright PFA (2006) Flow cytometric analysis and optimisation for measuring phagocytosis in three Australian freshwater fish. Fish Shellfish Immunol 20:562–573

    Article  Google Scholar 

  • Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19

    Article  CAS  Google Scholar 

  • Hohn C, Lee SR, Pinchuk LM, Petrie-Hanson L (2009) Zebrafish kidney phagocytes utilize macropinocytosis and Ca2+-dependent endocytic mechanisms. PLoS ONE 4(2):e4314

    Article  Google Scholar 

  • ICES (2010) Report of the ICES\OSPAR Workshop on Lysosomal Stability Data Quality and Interpretation (WKLYS). ICES CM 2010/ACOM:61, Alessandria

  • Inoue T, Moritomo T, Tamura Y, Mamiya S, Fujino H, Nakanishi T (2002) A new method for fish leucocyte counting and partial differentiation by flow cytometry. Fish Shellfish Immunol 13:379–390

    Article  Google Scholar 

  • Ivanovski O, Kulkeaw K, Nakagawa M, Sasaki T, Mizuochi C, Horio Y, Ishitani T, Sugiyama D (2009) Characterization of kidney marrow in zebrafish (Danio rerio) by using a new surgical technique. Contrib Maced Acad Sci Arts 30:71–80

    CAS  Google Scholar 

  • Kalinich JF, Ramakrishnan N, Villa V, McClain DE (2002) Depleted uranium-uranyl chloride induces apoptosis in mouse J774 macrophages. Toxicology 179:105–114

    Article  CAS  Google Scholar 

  • Kaplan JE, Chrenek RD, Morash JG, Ruksznis CM, Hannum LG (2008) Rhythmic patterns in phagocytosis and the production of reactive oxygen species by zebrafish leukocytes. Comp Biochem Physiol A 151:726–730

    Article  Google Scholar 

  • Keller JM, Meyer JN, Mattie M, Augspurger T, Rau M, Dong J, Levin ED (1999) Assessment of immunotoxicology in wild populations: review and recommendations. Rev Toxicol 3:167–212

    CAS  Google Scholar 

  • Kilemade M, Lyons-Alcantara M, Rose T, Fitzgerald R, Mothersill C (2002) Rainbow trout primary epidermal cell proliferation as an indicator of aquatic toxicity: an in vitro/in vivo exposure comparison. Aquat Toxicol 60:43–59

    Article  CAS  Google Scholar 

  • Kurttio P, Harmoinen A, Saha H, Salonen L, Karpas Z, Komulainen H, Auvinen A (2006) Kidney toxicity of ingested uranium from drinking water. Am J Kidney Dis 47:972–982

    Article  CAS  Google Scholar 

  • Kurz T, Terman A, Gustafsson B, Brunk UT (2008) Lysosomes and oxidative stress in aging and apoptosis. Biochim et Biophys Acta (BBA) 1780: 1291–1303

    Google Scholar 

  • Labrot F, Ribera D, Saint Denis M, Narbonne JF (1996) In vitro and in vivo studies of potential biomarkers of lead and uranium contamination: lipid peroxidation, acetylcholinesterase, catalase and glutathione peroxidase activities in three non-mammalian species. Biomarkers 1:21–28

    Article  CAS  Google Scholar 

  • Lage CR, Nayak A, Kim CH (2006) Arsenic ecotoxicology and innate immunity. Integr Comp Biol 46:1040–1054

    Article  CAS  Google Scholar 

  • Lerebours A, Gonzalez P, Adam C, Camilleri V, Bourdineaud JP, Garnier-Laplace J (2009) Comparative analysis of gene expression in brain, liver, skeletal muscles, and gills of zebrafish (Danio rerio) exposed to environmentally relevant waterborne uranium concentrations. Environ Toxicol Chem 28:1271–1278

    Article  CAS  Google Scholar 

  • Llorente MT, Martos A, Castano A (2002) Detection of cytogenetic alterations and blood cell changes in natural populations of carp. Ecotoxicology 11:27–34

    Article  CAS  Google Scholar 

  • Lourenço J, Pereira R, Pinto F, Caetano T, Silva A, Carvalheiro T, Guimaraes A, Gonçalves F, Paiva A, Mendo S (2013) Biomonitoring a human population inhabiting nearby a deactivated uranium mine. Toxicology 305:89–98

    Article  Google Scholar 

  • Mates JM (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153:83–104

    Article  CAS  Google Scholar 

  • Monleau M, De Méo M, Paquet F, Chazel V, Duménil G, Donnadieu-Claraz M (2006) Genotoxic and inflammatory effects of depleted uranium particles inhaled by rats. Toxicol Sci 89:287–295

    Article  CAS  Google Scholar 

  • Moore MN, Willows RI (1998) A model for cellular uptake and intracellular behaviour of particulate-bound micropollutants. Mar Environ Res 46:509–514

    Article  CAS  Google Scholar 

  • Moore MN, Depledge MH, Readman JW, Paul Leonard DR (2004) An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mut Res Fundam Mol Mech Mutagen 552:247–268

    Article  CAS  Google Scholar 

  • Neumann NF, Stafford JL, Barreda D, Ainsworth AJ, Belosevic M (2001) Antimicrobial mechanisms of fish phagocytes and their role in host defense. Dev Comp Immunol 25:807–825

    Article  CAS  Google Scholar 

  • OECD (2004) OECD guidelines for testing of chemicals, advance copy. Test 203: Fish, acute toxicity test

  • Orona NS, Tasat DR (2012) Uranyl nitrate-exposed rat alveolar macrophages cell death: influence of superoxide anion and TNF-α mediators. Toxicol Appl Pharmacol 261:309–316

    Article  CAS  Google Scholar 

  • Paffett-Lugassy NN, Zon LI (2005) Analysis of hematopoietic development in the zebrafish. Methods Mol Med 105:171–198

    CAS  Google Scholar 

  • Pereira S, Camilleri V, Floriani M, Cavalié I, Garnier-Laplace J, Adam-Guillermin C (2012) Genotoxicity of uranium contamination in embryonic zebrafish cells. Aquat Toxicol 109:11–16

    Article  CAS  Google Scholar 

  • Pourahmad J, Ghashang M, Ettehadi HA, Ghalandari R (2006) A search for cellular and molecular mechanisms involved in depleted uranium (DU) toxicity. Environ Toxicol 21:349–354

    Article  CAS  Google Scholar 

  • Pourahmad J, Shaki F, Tanbakosazan F, Ghalandari R, Hossein Ali E, Dahaghin E (2011) Protective effects of fungal beta-(1′3)-D-glucan against oxidative stress cytotoxicity induced by depleted uranium in isolated rat hepatocytes. Hum Exp Toxicol 30:173–181

    Article  CAS  Google Scholar 

  • Ragnarsdottir KV, Charlet L (2000) Uranium behavior in natural environments. In: Cotter-Howells J, Batchelder M, Campbell L, Valsami-Jones E (eds) Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management. Mineralogical Society of Great Britain and Ireland, Twickenham, pp 333–377

    Google Scholar 

  • Rodriguez I, Novoa B, Figueras A (2008) Immune response of zebrafish (Danio rerio) against a newly isolated bacterial pathogen Aeromonas hydrophila. Fish Shellfish Immunol 25:239–249

    Article  CAS  Google Scholar 

  • Rougier F, Troutaud D, Ndoye A, Deschaux P (1994) Non-specific immune response of Zebrafish, Brachydanio rerio (Hamilton-Buchanan) following copper and zinc exposure. Fish Shellfish Immunol 4:115–127

    Article  Google Scholar 

  • Scharsack JP, Kalbe M, Derner R, Kurtz J, Milinski M (2004) Modulation of granulocyte responses in three-spined sticklebacks Gasterosteus aculeatus infected with the tapeworm Schistocephalus solidus. Dis Aquat Org 59:141–150

    Article  CAS  Google Scholar 

  • Shaki F, Hosseini MJ, Ghazi-Khansari M, Pourahmad J (2012) Toxicity of depleted uranium on isolated rat kidney mitochondria. Biochim et Biophys Acta Gen Subjects 1820:1940–1950

    Article  CAS  Google Scholar 

  • Taulan M, Paquet F, Maubert C, Delissen O, Demaille J, Romey MC (2004) Renal toxicogenomic response to chronic uranyl nitrate insult in mice. Environ Health Perspect 112:1628–1635

    Article  CAS  Google Scholar 

  • Thiébault C, Carrière M, Milgram S, Simon A, Avoscan L, Gouget B (2007) Uranium induces apoptosis and is genotoxic to normal rat kidney (NRK-52E) proximal cells. Toxicol Sci 98:479–487

    Article  Google Scholar 

  • Thomas PA (2000) Radionuclides in the terrestrial ecosystem near a Canadian uranium mill—Part I: distribution and doses. Health Phys 78(6):614–624

    Article  CAS  Google Scholar 

  • Traver D, Paw BH, Poss KD, Penberthy WT, Lin S, Zon LI (2003) Transplantation and in vivo imaging of multilineage engraftment in zebrafish bloodless mutants. Nat Immunol 4:1238–1246

    Article  CAS  Google Scholar 

  • van Dam RA, Humphrey CL, Martin P (2002) Mining in the Alligator Rivers Region, northern Australia: assessing potential and actual effects on ecosystem and human health. Toxicology 181–182:505–515

    Google Scholar 

  • van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149

    Article  Google Scholar 

  • Villena AJ (2003) Applications and needs of fish and shellfish cell culture for disease control in aquaculture. Rev Fish Biol Fish 13:111–140

    Article  Google Scholar 

  • Wan B, Fleming JT, Schultz TW, Sayler GS (2006) In vitro immune toxicity of depleted uranium: effects on murine macrophages, CD4+T cells, and gene expression profiles. Environ Health Perspect 114:85–91

    Article  CAS  Google Scholar 

  • WHO (2012) Guidelines for drinking-water quality. Chemical hazards in drinking-water: uranium. World Health Organization, Geneva. http://www.who.int/water_sanitation_health/dwq/chemicals/uranium/en/

  • Whyte SK (2007) The innate immune response of finfish—a review of current knowledge. Fish Shellfish Immunol 23:1127–1151

    Article  CAS  Google Scholar 

  • Winston GW, Moore MN, Kirchin MA, Soverchia C (1996) Production of reactive oxygen species by hemocytes from the marine mussel, Mytilus edulis: lysosomal localization and effect of xenobiotics. Comp Biochem Physiol C 113:221–229

    Article  CAS  Google Scholar 

  • Wong S, Fournier M, Coderre D, Banska W, Krzystyniak K (1992) Environmental immunotoxicology. In: Peakall D (ed) Animals biomarkers as pollution indicators. Chapman and Hall, London, pp 167–189

    Chapter  Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr C Adam-Guillermin is acknowledged for allowing the work at the Laboratory of Ecotoxicology of Radionuclides (IRSN, Cadarache, France). Dr S Betoulle, O Geffard and JM Porcher are acknowledged for allowing venue of A Bado-Nilles at IRSN in order to participate to the experiments. V Camilleri and S Frelon are acknowledged for their help for water analyses. This work was partly supported by the ENVIRHOM research program supported by the Institute for Radioprotection and Nuclear Safety (IRSN). We also acknowledge the financial support of the Post-Grenelle Program 190 (DEVIL program) of the French Ministry for Ecology and Sustainable Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Béatrice Gagnaire.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagnaire, B., Bado-Nilles, A. & Sanchez, W. Depleted Uranium Disturbs Immune Parameters in Zebrafish, Danio rerio: An Ex Vivo/In Vivo Experiment. Arch Environ Contam Toxicol 67, 426–435 (2014). https://doi.org/10.1007/s00244-014-0022-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-014-0022-x

Keywords

Navigation