Skip to main content
Log in

Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors

  • Original Article
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Background

Solid malignant tumors are more highly cellular than benign lesions and hence have a restricted diffusion of water molecules.

Objective

To evaluate whether diffusion-weighted MR imaging (DWI) can differentiate between benign and malignant pediatric abdominal tumors.

Materials and methods

We retrospectively analyzed DWI scans of 68 consecutive children with 39 benign and 34 malignant abdominal masses. To calculate the apparent diffusion coefficient (ADC) maps and ADC values, we used 1.5-T sequences at TR/TE/b-value of 5,250–7,500/54–64/b = 0, 500 and 3-T sequences at 3,500–4,000/66–73/b = 0, 500, 800. ADC values were compared between benign and malignant and between data derived at 1.5 tesla (T) and at 3 tesla magnetic field strength, using the Mann-Whitney-Wilcoxon test, ANOVA and a receiver operating curve (ROC) analysis.

Results

There was no significant difference in ADC values obtained at 1.5 T and 3 T (P = 0.962). Mean ADC values (× 10−3 mm2/s) were 1.07 for solid malignant tumors, 1.6 for solid benign tumors, 2.9 for necrotic portions of malignant tumors and 3.1 for cystic benign lesions. The differences between malignant and benign solid tumors were statistically significant (P = 0.000025). ROC analysis revealed an optimal cut-off ADC value for differentiating malignant and benign solid tumors as 1.29 with excellent inter-observer reliability (alpha score 0.88).

Conclusion

DWI scans and ADC values can contribute to distinguishing between benign and malignant pediatric abdominal tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

DWI:

Diffusion-weighted MR imaging

ADC:

Apparent diffusion coefficient

ANOVA:

Analysis of variance

ROC:

Receiver operating curve

FSE:

Fast spin-echo

LAVA:

Liver acquisition with volume acquisition

FOV:

Field of view

References

  1. Koh DM, Takahara T, Imai Y et al (2007) Practical aspects of assessing tumors using clinical diffusion-weighted imaging in the body. Magn Reson Med Sci 6:211–224

    Article  PubMed  Google Scholar 

  2. Harry VN, Semple SI, Parkin DE et al (2010) Use of new imaging techniques to predict tumour response to therapy. Lancet Oncol 11:92–102

    Article  PubMed  Google Scholar 

  3. Pickles MD, Gibbs P, Lowry M et al (2006) Diffusion changes precede size reduction in neoadjuvant treatment of breast cancer. Magn Reson Imaging 24:843–847

    Article  PubMed  Google Scholar 

  4. Sugita R, Ito K, Fujita N et al (2010) Diffusion-weighted MRI in abdominal oncology: clinical applications. World J Gastroenterol 16:832–836

    PubMed  Google Scholar 

  5. Koh DM, Brown G, Riddell AM et al (2008) Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur Radiol 18:903–910

    Article  PubMed  CAS  Google Scholar 

  6. Ichikawa T, Erturk SM, Motosugi U et al (2006) High-B-value diffusion-weighted MRI in colorectal cancer. AJR Am J Roentgenol 187:181–184

    Article  PubMed  Google Scholar 

  7. Ichikawa T, Erturk SM, Motosugi U et al (2007) High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol 188:409–414

    Article  PubMed  Google Scholar 

  8. Chan JH, Tsui EY, Luk SH et al (2001) Diffusion-weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging 26:161–165

    Article  PubMed  CAS  Google Scholar 

  9. Irie H, Kamochi N, Nojiri J et al (2011) High b-value diffusion-weighted MRI in differentiation between benign and malignant polypoid gallbladder lesions. Acta Radiol 52:236–240

    Article  PubMed  Google Scholar 

  10. Rosenkrantz AB, Oei M, Babb JS et al (2011) Diffusion-weighted imaging of the abdomen at 3.0 tesla: image quality and apparent diffusion coefficient reproducibility compared with 1.5 tesla. J Magn Reson Imaging 33:128–135

    Article  PubMed  Google Scholar 

  11. Bilgili MY (2011) Reproducibility of apparent diffusion coefficients measurements in diffusion-weighted MRI of the abdomen with different b values. Eur J Radiol 81:2066–2068

    Article  PubMed  Google Scholar 

  12. Razek AA, Farouk A, Mousa A et al (2011) Role of diffusion-weighted magnetic resonance imaging in characterization of renal tumors. J Comput Assist Tomogr 35:332–336

    Article  PubMed  Google Scholar 

  13. Saremi F, Jalili M, Sefidbakht S et al (2011) Diffusion-weighted imaging of the abdomen at 3 T: image quality comparison with 1.5-T magnet using 3 different imaging sequences. J Comput Assist Tomogr 35:317–325

    Article  PubMed  Google Scholar 

  14. Wang Y, Chen ZE, Nikolaidis P et al (2011) Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade. J Magn Reson Imaging 33:136–142

    Article  PubMed  CAS  Google Scholar 

  15. Yang DM, Jahng GH, Kim HC et al (2011) The detection and discrimination of malignant and benign focal hepatic lesions: T2 weighted vs diffusion-weighted MRI. Br J Radiol 84:319–326

    Article  PubMed  CAS  Google Scholar 

  16. Kato T, Kojima Y, Kamisawa H et al (2011) Findings of fat-suppressed T2-weighted and diffusion-weighted magnetic resonance imaging in the diagnosis of non-palpable testes. BJU Int 107:290–294

    Article  PubMed  Google Scholar 

  17. Nagayama M, Watanabe Y, Terai A et al (2011) Determination of the cutoff level of apparent diffusion coefficient values for detection of prostate cancer. Jpn J Radiol 29:488–494

    Article  PubMed  Google Scholar 

  18. Ording Muller LS, Avenarius D, Olsen OE (2011) High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children. Pediatr Radiol 41:221–226

    Article  PubMed  Google Scholar 

  19. Soylu A, Kilickesmez O, Poturoglu S et al (2010) Utility of diffusion-weighted MRI for assessing liver fibrosis in patients with chronic active hepatitis. Diagn Interv Radiol 16:204–208

    PubMed  Google Scholar 

  20. Dale BM, Braithwaite AC, Boll DT et al (2010) Field strength and diffusion encoding technique affect the apparent diffusion coefficient measurements in diffusion-weighted imaging of the abdomen. Invest Radiol 45:104–108

    Article  PubMed  Google Scholar 

  21. Alibek S, Cavallaro A, Aplas A et al (2009) Diffusion weighted imaging of pediatric and adolescent malignancies with regard to detection and delineation: initial experience. Acad Radiol 16:866–871

    Article  PubMed  Google Scholar 

  22. Braithwaite AC, Dale BM, Boll DT et al (2009) Short- and midterm reproducibility of apparent diffusion coefficient measurements at 3.0-T diffusion-weighted imaging of the abdomen. Radiology 250:459–465

    Article  PubMed  Google Scholar 

  23. Kilickesmez O, Inci E, Atilla S et al (2009) Diffusion-weighted imaging of the renal and adrenal lesions. J Comput Assist Tomogr 33:828–833

    Article  PubMed  Google Scholar 

  24. Kilickesmez O, Bayramoglu S, Inci E et al (2009) Value of apparent diffusion coefficient measurement for discrimination of focal benign and malignant hepatic masses. J Med Imaging Radiat Oncol 53:50–55

    Article  PubMed  CAS  Google Scholar 

  25. Akduman EI, Momtahen AJ, Balci NC et al (2008) Comparison between malignant and benign abdominal lymph nodes on diffusion-weighted imaging. Acad Radiol 15:641–646

    Article  PubMed  Google Scholar 

  26. Fujii S, Kakite S, Nishihara K et al (2008) Diagnostic accuracy of diffusion-weighted imaging in differentiating benign from malignant ovarian lesions. J Magn Reson Imaging 28:1149–1156

    Article  PubMed  Google Scholar 

  27. Kilickesmez O, Yirik G, Bayramoglu S et al (2008) Non-breath-hold high b-value diffusion-weighted MRI with parallel imaging technique: apparent diffusion coefficient determination in normal abdominal organs. Diagn Interv Radiol 14:83–87

    PubMed  Google Scholar 

  28. Tsushima Y, Takano A, Taketomi-Takahashi A et al (2007) Body diffusion-weighted MR imaging using high b-value for malignant tumor screening: usefulness and necessity of referring to T2-weighted images and creating fusion images. Acad Radiol 14:643–650

    Article  PubMed  Google Scholar 

  29. Humphries PD, Sebire NJ, Siegel MJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 245:848–854

    Article  PubMed  Google Scholar 

  30. Kocaoglu M, Bulakbasi N, Sanal HT et al (2010) Pediatric abdominal masses: diagnostic accuracy of diffusion weighted MRI. Magn Reson Imaging 28:629–636

    Article  PubMed  Google Scholar 

  31. McDonald K, Sebire NJ, Anderson J et al (2011) Patterns of shift in ADC distributions in abdominal tumours during chemotherapy-feasibility study. Pediatr Radiol 41:99–106

    Article  PubMed  Google Scholar 

  32. Kwee TC, Takahara T, Luijten PR et al (2010) ADC measurement of lymph nodes: inter- and intra-observer reproducibility study and an overview of the literature. Eur J Radiol 75:215–220

    Article  PubMed  Google Scholar 

  33. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66

    Article  PubMed  Google Scholar 

  34. Merkle EM, Dale BM (2006) Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol 186:1524–1532

    Article  PubMed  Google Scholar 

  35. Bruegel M, Holzapfel K, Gaa J et al (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  PubMed  Google Scholar 

  36. Le Bihan D, Breton E, Lallemand D et al (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Society for Pediatric Radiology Research and Education Foundation and by the Thrasher Research Fund. We would like to acknowledge Jennifer Vancil, who helped us with the editing of the images and figures for this manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike E. Daldrup-Link.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gawande, R.S., Gonzalez, G., Messing, S. et al. Role of diffusion-weighted imaging in differentiating benign and malignant pediatric abdominal tumors. Pediatr Radiol 43, 836–845 (2013). https://doi.org/10.1007/s00247-013-2626-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-013-2626-0

Keywords

Navigation