Skip to main content

Advertisement

Log in

Viable but Not Culturable Forms of Legionella pneumophila Generated After Heat Shock Treatment Are Infectious for Macrophage-Like and Alveolar Epithelial Cells After Resuscitation on Acanthamoeba polyphaga

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 27 February 2015

Abstract

Legionella pneumophila, the causative agent of legionellosis is transmitted to human through aerosols from environmental sources and invades lung’s macrophages. It also can invade and replicate within various protozoan species in environmental reservoirs. Following exposures to various stresses, L. pneumophila enters a non-replicative viable but non-culturable (VBNC) state. Here, we evaluated whether VBNC forms of three L. pneumophila serogroup 1 strains (Philadelphia GFP 008, clinical 044 and environmental RNN) infect differentiated macrophage-like cell lines (U937 and HL-60), A549 alveolar cells and Acanthamoeba polyphaga. VBNC forms obtained following shocks at temperatures ranging from 50 to 70 °C for 5 to 60 min were quantified using a flow cytometric assay (FCA). Their loss of culturability was checked on BCYE agar medium. VBNC forms were systematically detected upon a 70 °C heat shock for 30 min. When testing their potential to resuscitate upon amoebal infection, VBNC forms obtained after 30 min at 70 °C were re-cultivated except for the clinical strain. No resuscitation or cell lysis was evidenced when using U937, HL-60, or A549 cells despite the use of various contact times and culture media. None of the strains tested could infect A. polyphaga, macrophage-like or alveolar epithelial cells after a 60-min treatment at 70 °C. However, heat-treated VBNC forms were able to infect macrophage-like or alveolar epithelial cells following their resuscitation on A. polyphaga. These results suggest that heat-generated VBNC forms of L. pneumophila (i) are not infectious for macrophage-like or alveolar epithelial cells in vitro although resuscitation is still possible using amoeba, and (ii) may become infectious for human cell lines following a previous interaction with A. polyphaga.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McDade JE, Shepard CC, Fraser DW, Tsai TR, Redus MA, Dowdle WR (1977) Legionnaires' disease: isolation of a bacterium and demonstration of its role in other respiratory disease. N Engl J Med 297(22):1197–1203. doi:10.1056/NEJM197712012972202

    Article  CAS  PubMed  Google Scholar 

  2. Messi P, Bargellini A, Anacarso I, Marchesi I, de Niederhausern S, Bondi M (2013) Protozoa and human macrophages infection by Legionella pneumophila environmental strains belonging to different serogroups. Arch Microbiol 195(2):89–96. doi:10.1007/s00203-012-0851-9

    Article  CAS  PubMed  Google Scholar 

  3. Albert-Weissenberger C, Cazalet C, Buchrieser C (2007) Legionella pneumophila—a human pathogen that co-evolved with fresh water protozoa. Cell Mol Life Sci 64(4):432–448. doi:10.1007/s00018-006-6391-1

    Article  CAS  PubMed  Google Scholar 

  4. Jules M, Buchrieser C (2007) Legionella pneumophila adaptation to intracellular life and the host response: clues from genomics and transcriptomics. FEBS Lett 581(15):2829–2838. doi:10.1016/j.febslet.2007.05.026

    Article  CAS  PubMed  Google Scholar 

  5. Steinert M, Heuner K, Buchrieser C, Albert-Weissenberger C, Glockner G (2007) Legionella pathogenicity: genome structure, regulatory networks and the host cell response. Int J Med Microbiol 297(7–8):577–587. doi:10.1016/j.ijmm.2007.03.009

    Article  CAS  PubMed  Google Scholar 

  6. Steinert M, Hentschel U, Hacker J (2002) Legionella pneumophila: an aquatic microbe goes astray. FEMS Microbiol Rev 26(2):149–162

    Article  CAS  PubMed  Google Scholar 

  7. Atlas RM (1999) Legionella: from environmental habitats to disease pathology, detection and control. Environ Microbiol 1(4):283–293

    Article  CAS  PubMed  Google Scholar 

  8. WHO (2004) Gaining Health, the European Strategy for Prevention and Control of Non-communicable Diseases

  9. Kim BR, Anderson JE, Mueller SA, Gaines WA, Kendall AM (2002) Literature review—efficacy of various disinfectants against Legionella in water systems. Water Res 36(18):4433–4444

    Article  CAS  PubMed  Google Scholar 

  10. Marchesi I, Marchegiano P, Bargellini A, Cencetti S, Frezza G, Miselli M, Borella P (2011) Effectiveness of different methods to control Legionella in the water supply: ten-year experience in an Italian university hospital. J Hosp Infect 77(1):47–51. doi:10.1016/j.jhin.2010.09.012

    Article  CAS  PubMed  Google Scholar 

  11. Chang CW, Hwang YH, Cheng WY, Chang CP (2007) Effects of chlorination and heat disinfection on long-term starved Legionella pneumophila in warm water. J Appl Microbiol 102(6):1636–1644. doi:10.1111/j.1365-2672.2006.03195.x

    Article  CAS  PubMed  Google Scholar 

  12. Borella P, Guerrieri E, Marchesi I, Bondi M, Messi P (2005) Water ecology of Legionella and protozoan: environmental and public health perspectives. Biotechnol Annu Rev 11:355–380. doi:10.1016/S1387-2656(05)11011-4

    Article  CAS  PubMed  Google Scholar 

  13. Oliver JD (2010) Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34(4):415–425. doi:10.1111/j.1574-6976.2009.00200.x

    CAS  PubMed  Google Scholar 

  14. Alleron L, Khemiri A, Koubar M, Lacombe C, Coquet L, Cosette P, Jouenne T, Frere J (2013) VBNC Legionella pneumophila cells are still able to produce virulence proteins. Water Res 47(17):6606–6617. doi:10.1016/j.watres.2013.08.032

    Article  CAS  PubMed  Google Scholar 

  15. Allegra S, Berger F, Berthelot P, Grattard F, Pozzetto B, Riffard S (2008) Use of flow cytometry to monitor Legionella viability. Appl Environ Microbiol 74(24):7813–7816. doi:10.1128/AEM.01364-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Dusserre E, Ginevra C, Hallier-Soulier S, Vandenesch F, Festoc G, Etienne J, Jarraud S, Molmeret M (2008) A PCR-based method for monitoring Legionella pneumophila in water samples detects viable but noncultivable legionellae that can recover their cultivability. Appl Environ Microbiol 74(15):4817–4824. doi:10.1128/AEM.02899-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hussong D, Colwell R, O'brien M, Weiss E, Pearson A, Weiner R, Burge W (1987) Viable Legionella pneumophila not detectable by culture on agar media. DTIC Document

  18. Steinert M, Emody L, Amann R, Hacker J (1997) Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl Environ Microbiol 63(5):2047–2053

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Alleron L, Merlet N, Lacombe C, Frere J (2008) Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Curr Microbiol 57(5):497–502. doi:10.1007/s00284-008-9275-9

    Article  CAS  PubMed  Google Scholar 

  20. Harris P, Ralph P (1985) Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol 37(4):407–422

    CAS  PubMed  Google Scholar 

  21. Furugen M, Higa F, Hibiya K, Teruya H, Akamine M, Haranaga S, Yara S, Koide M, Tateyama M, Mori N, Fujita J (2008) Legionella pneumophila infection induces programmed cell death, caspase activation, and release of high-mobility group box 1 protein in A549 alveolar epithelial cells: inhibition by methyl prednisolone. Respir Res 9:39. doi:10.1186/1465-9921-9-39

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chang B, Amemura-Maekawa J, Kura F, Kawamura I, Watanabe H (2004) Expression of IL-6 and TNF-alpha in human alveolar epithelial cells is induced by invading, but not by adhering, Legionella pneumophila. Microb Pathog 37(6):295–302. doi:10.1016/j.micpath.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  23. Marra A, Horwitz MA, Shuman HA (1990) The HL-60 model for the interaction of human macrophages with the Legionnaires' disease bacterium. J Immunol 144(7):2738–2744

    CAS  PubMed  Google Scholar 

  24. Angst E, Reber HA, Hines OJ, Eibl G (2008) Mononuclear cell-derived interleukin-1 beta confers chemoresistance in pancreatic cancer cells by upregulation of cyclooxygenase-2. Surgery 144(1):57–65. doi:10.1016/j.surg.2008.03.024

    Article  PubMed Central  PubMed  Google Scholar 

  25. Seitz M, Zwicker M, Loetscher P (1998) Effects of methotrexate on differentiation of monocytes and production of cytokine inhibitors by monocytes. Arthritis Rheum 41(11):2032–2038. doi:10.1002/1529-0131(199811)41:11<2032::AID-ART19>3.0.CO;2-J

    Article  CAS  PubMed  Google Scholar 

  26. Allegra S, Grattard F, Girardot F, Riffard S, Pozzetto B, Berthelot P (2011) Longitudinal evaluation of the efficacy of heat treatment procedures against Legionella spp. in hospital water systems by using a flow cytometric assay. Appl Environ Microbiol 77(4):1268–1275. doi:10.1128/AEM.02225-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. DGS (2002) DGS/SD7A/SD5C/DHOS/E4 n° 2002/243 Prévention du risque lié aux légionelles dans les établissements de santé. Bulletin officielle de la santé

  28. Jackson DN, Davis B, Tirado SM, Duggal M, van Frankenhuyzen JK, Deaville D, Wijesinghe MA, Tessaro M, Trevors JT (2009) Survival mechanisms and culturability of Campylobacter jejuni under stress conditions. Antonie Van Leeuwenhoek 96(4):377–394. doi:10.1007/s10482-009-9378-8

    Article  PubMed  Google Scholar 

  29. Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51(3):365–379

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Mukamolova GV, Kaprelyants AS, Kell DB, Young M (2003) Adoption of the transiently non-culturable state—a bacterial survival strategy? Adv Microb Physiol 47:65–129

    Article  CAS  PubMed  Google Scholar 

  31. Desnues B, Cuny C, Gregori G, Dukan S, Aguilaniu H, Nystrom T (2003) Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep 4(4):400–404. doi:10.1038/sj.embor.embor799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Cuny C, Dukan L, Fraysse L, Ballesteros M, Dukan S (2005) Investigation of the first events leading to loss of culturability during Escherichia coli starvation: future nonculturable bacteria form a subpopulation. J Bacteriol 187(7):2244–2248. doi:10.1128/JB.187.7.2244-2248.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Nowakowska J, Oliver JD (2013) Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol Ecol 84(1):213–222. doi:10.1111/1574-6941.12052

    Article  CAS  PubMed  Google Scholar 

  34. Hammer BK, Swanson MS (1999) Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol 33(4):721–731

    Article  CAS  PubMed  Google Scholar 

  35. Edwards RL, Dalebroux ZD, Swanson MS (2009) Legionella pneumophila couples fatty acid flux to microbial differentiation and virulence. Mol Microbiol 71(5):1190–1204. doi:10.1111/j.1365-2958.2009.06593.x

    Article  PubMed  Google Scholar 

  36. Lamoth F, Greub G (2010) Amoebal pathogens as emerging causal agents of pneumonia. FEMS Microbiol Rev 34(3):260–280. doi:10.1111/j.1574-6976.2009.00207.x

    Article  CAS  PubMed  Google Scholar 

  37. Dey R, Bodennec J, Mameri MO, Pernin P (2009) Free-living freshwater amoebae differ in their susceptibility to the pathogenic bacterium Legionella pneumophila. FEMS Microbiol Lett 290(1):10–17. doi:10.1111/j.1574-6968.2008.01387.x

    Article  CAS  PubMed  Google Scholar 

  38. Loret JF, Jousset M, Robert S, Saucedo G, Ribas F, Thomas V, Greub G (2008) Amoebae-resisting bacteria in drinking water: risk assessment and management. Water Sci Technol 58(3):571–577. doi:10.2166/wst.2008.423

    Article  CAS  PubMed  Google Scholar 

  39. Farhat M, Moletta-Denat M, Frere J, Onillon S, Trouilhe MC, Robine E (2012) Effects of disinfection on Legionella spp., eukarya, and biofilms in a hot water system. Appl Environ Microbiol 78(19):6850–6858. doi:10.1128/AEM.00831-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Steinert M (2011) Pathogen-host interactions in Dictyostelium, Legionella, Mycobacterium and other pathogens. Semin Cell Dev Biol 22(1):70–76. doi:10.1016/j.semcdb.2010.11.003

    Article  CAS  PubMed  Google Scholar 

  41. Mody CH, Paine R, Shahrabadi MS, Simon RH, Pearlman E, Eisenstein BI, Toews GB (1993) Legionella pneumophila replicates within rat alveolar epithelial cells. J Infect Dis 167(5):1138–1145

    Article  CAS  PubMed  Google Scholar 

  42. Maruta K, Miyamoto H, Hamada T, Ogawa M, Taniguchi H, Yoshida S (1998) Entry and intracellular growth of Legionella dumoffii in alveolar epithelial cells. Am J Respir Crit Care Med 157(6 Pt 1):1967–1974. doi:10.1164/ajrccm.157.6.9710108

    Article  CAS  PubMed  Google Scholar 

  43. Cirillo JD, Falkow S, Tompkins LS (1994) Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62(8):3254–3261

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Gao LY, Harb OS, Kwaik YA (1998) Identification of macrophage-specific infectivity loci (mil) of Legionella pneumophila that are not required for infectivity of protozoa. Infect Immun 66(3):883–892

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Senoh M, Ghosh-Banerjee J, Ramamurthy T, Colwell RR, Miyoshi S, Nair GB, Takeda Y (2012) Conversion of viable but nonculturable enteric bacteria to culturable by co-culture with eukaryotic cells. Microbiol Immunol 56(5):342–345. doi:10.1111/j.1348-0421.2012.00440.x

    Article  CAS  PubMed  Google Scholar 

  46. Lindback T, Rottenberg ME, Roche SM, Rorvik LM (2010) The ability to enter into an avirulent viable but non-culturable (VBNC) form is widespread among Listeria monocytogenes isolates from salmon, patients and environment. Vet Res 41(1):8. doi:10.1051/vetres/2009056

    Article  PubMed  Google Scholar 

  47. Wai SN, Mizunoe Y, Takade A, Yoshida S (2000) A comparison of solid and liquid media for resuscitation of starvation- and low-temperature-induced nonculturable cells of Aeromonas hydrophila. Arch Microbiol 173(4):307–310

    Article  CAS  PubMed  Google Scholar 

  48. Farhat M, Trouilhe MC, Briand E, Moletta-Denat M, Robine E, Frere J (2010) Development of a pilot-scale 1 for Legionella elimination in biofilm in hot water network: heat shock treatment evaluation. J Appl Microbiol 108(3):1073–1082. doi:10.1111/j.1365-2672.2009.04541.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. F. Grattard from Centre Hospitalier Universitaire de Saint Etienne, France, for the clinical and environmental strains used during this study. We would like to thank Dr. C. Ginevra and Dr. S. Jarraud from the Centre National de Référence des Légionelles for providing us with the GFP-modified Philadelphia strain. We would like to thank Dr A. Guignandon from Laboratoire de Biologie intégrative de Tissu Osseux, St Etienne, France, for his help in videomicroscopy. We thank Dr O. Delezay for his help in cells culture. T. Epalle, as a PhD student, is supported by a grant from Région Rhône-Alpes, France through the Environment Academic Research Committee. We would like to sincerely thank Région Rhône-Alpes for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Riffard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Epalle, T., Girardot, F., Allegra, S. et al. Viable but Not Culturable Forms of Legionella pneumophila Generated After Heat Shock Treatment Are Infectious for Macrophage-Like and Alveolar Epithelial Cells After Resuscitation on Acanthamoeba polyphaga . Microb Ecol 69, 215–224 (2015). https://doi.org/10.1007/s00248-014-0470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0470-x

Keywords

Navigation