Skip to main content

Advertisement

Log in

Bacterial Contribution in Chronicity of Wounds

  • Review
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

A wound is damage of a tissue usually caused by laceration of a membrane, generally the skin. Wound healing is accomplished in three stages in healthy individuals, including inflammatory, proliferative, and remodeling stages. Healing of wounds normally starts from the inflammatory phase and ends up in the remodeling phase, but chronic wounds remain in an inflammatory stage and do not show progression due to some specific reasons. Chronic wounds are classified in different categories, such as diabetic foot ulcer (DFU), venous leg ulcers (VLU) and pressure ulcer (PU), surgical site infection (SSI), abscess, or trauma ulcers. Globally, the incidence rate of DFU is 1–4 % and prevalence rate is 5.3–10.5 %. However, colonization of pathogenic bacteria at the wound site is associated with wound chronicity. Most chronic wounds contain more than one bacterial species and produce a synergetic effect that results in previously non-virulent bacterial species becoming virulent and causing damage to the host. While investigating bacterial diversity in chronic wounds, Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia, and Serratia were found most frequently in chronic wounds. Recently, it has been observed that bacteria in chronic wounds develop biofilms that contribute to a delay in healing. In a mature biofilm, bacteria grow slowly due to deficiency of nutrients that results in the resistance of bacteria to antibiotics. The present review reflects the reasons why acute wounds become chronic. Interesting findings include the bacterial load, which forms biofilms and shows high-level resistance toward antibiotics, which is a threat to human health in general and particularly to some patients who have acute wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 3
Fig. 2

Similar content being viewed by others

References

  1. Bygott JD, Bertram BCR, Hanby JP (1979) Male lions in large coalitions gain reproductive advantages. Nature 282:839–841

    Article  Google Scholar 

  2. Fallouh HB, Venugopal PS, Newton A (2009) Occult gunshot wounds in the emergency department. Lancet 373:631–632

    Article  PubMed  Google Scholar 

  3. Dombradi Z, Bodnar F, Orosi P, Dombrádi V, Szabo J (2009) A case report of vancomycin-resistant Enterococcus faecalis colonization of a femoral wound in central Europe. Cent Eur J Med 4:259–261

    Google Scholar 

  4. Nasser S, Mabrouk A, Maher A (2003) Colonization of burn wounds in Ain Shams University Burn Unit. J Int Soc Burn Inj 29:229–233

    Article  Google Scholar 

  5. Quinn JV (1998) Tissue adhesives in wound care. BC Decker

  6. Reiber GE, Ledoux WR (2002) Epidemiology of diabetic foot ulcers and amputations: evidence for prevention. Evid Base Diabetes Care 641–665

  7. Ramachandran A (2004) Specific problems of the diabetic foot in developing countries. Diabetes Metab Res Rev 20:123–133

    Article  Google Scholar 

  8. Gloviczki P, Gloviczki ML (2009) Evidence on efficacy of treatments of venous ulcers and on prevention of ulcer recurrence. Perspect Vasc Surg Endovasc Ther 21:259–268

    Article  PubMed  Google Scholar 

  9. Bergan JJ, Schmid-Schönbein GW, Smith PD, Nicolaides AN, Boisseau MR, Eklof B (2006) Chronic venous disease. N Engl J Med 355:488–498

    Article  CAS  PubMed  Google Scholar 

  10. Smyth ET, McIlvenny G, Enstone JE, Emmerson AM, Humphreys H, Fitzpatrick F, Davies E, Newcombe RG, Spencer RC (2008) Hospital Infection Society Prevalence Survey Steering Group. Four country healthcare associated infection prevalence survey 2006: overview of the results. J Hosp Infect 69:230–48

    Article  CAS  PubMed  Google Scholar 

  11. Armour-Burton T, Fields W, Outlaw L, Deleon E (2013) The healthy skin project: changing nursing practice to prevent and treat hospital-acquired pressure ulcers. Crit Care Nurse 33:32–40

    Article  PubMed  Google Scholar 

  12. Chicano S, Drolshagen C (2009) Wound care: reducing hospital-acquired pressure ulcers. J Wound Ostomy Cont Nurs 36:45–50

    Article  Google Scholar 

  13. Cuddigan J, Berlowitz DR, Ayello EA (2001) Pressure ulcers in America: prevalence, incidence, and implications for the future. Adv Skin Wound Care 14:208

    Article  Google Scholar 

  14. Bessa LJ, Fazii P, Giulio M, Cellini L (2015) Bacterial isolates from infected wounds and their antibiotic susceptibility pattern: some remarks about wound infection. Int Wound J 12:47–52

    Article  PubMed  Google Scholar 

  15. Olszewski WL (2016) Role of bacteria in pathogenesis of lower leg ulcers. In ulcers of the lower extremity 125–140. Springer, India

  16. Lewis K (2012) Persister cells: molecular mechanisms related to antibiotic tolerance. In Antibiotic resistance 121–133. Springer Berlin Heidelberg

  17. Ghannoum M, O’Toole GA (2008) Microbial biofi lms. ASM Press, Washington, DC

    Google Scholar 

  18. Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD (2008) Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8:1

    Article  CAS  Google Scholar 

  19. Hassan M, Kjos M, Nes IF, Diep DB, Lotfipour F (2012) Natural antimicrobial peptides from bacteria: characteristics and potential applications to fight against antibiotic resistance. J App Microbiol 23:1365–2672

    Google Scholar 

  20. Mah MW, Memish ZA, Cummingam G, Bannyamm RM (2001) Outbreak of acenetobacter baumanii in intensice care unit associated with trechostaumi. Am J Infect Control 29:284–288

    Article  CAS  PubMed  Google Scholar 

  21. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  22. Davis SC, Ricotti C, Cazzaniga A (2008) Microscopic and physiologic evidence for biofilm-associated wound colonization in vivo. Wound Repair Regen 16:23–29

    Article  PubMed  Google Scholar 

  23. Mustoe TA, Shaughnessy KO, Kloeters O (2006) Chronic wound pathogenesis and current treatment strategies: a unifying hypothesis. Plast Reconstr Surg 117:35–41

    Article  CAS  Google Scholar 

  24. Doughty MJ, Laiquzzaman M, Muller A, Oblak E, Button NF (2007) Central corneal thickness in European (white) individuals, especially children and the elderly, and assessment of its possible importance in clinical measures of intra-ocular pressure. Ophthalmic Physiol Opt 22:491–504

    Article  Google Scholar 

  25. Evans E (2005) Nutritional assessment in chronic wound care. J Wound Ostomy Cont Nurs 32:317–320

    Article  Google Scholar 

  26. Kane DP (2007) Chronic wound healing and chronic wound management. J Wound Regen 78:123–138

    Google Scholar 

  27. Singh N, Armstrong DG (2005) Preventing foot ulcers in patients with diabetes. J Acquir Manag 293:217–228

    CAS  Google Scholar 

  28. Bakker K, Riley PH (2005) The year of the diabetic foot. Diabetes Voice 50:11–14

    Google Scholar 

  29. Bahler K, Riley PH (2005) The year of the diabetic foot. Diabetes Voice 51:15–18

    Google Scholar 

  30. Reiber GE (2001) Epidemiology of foot ulcers and amputations in the diabetic foot. Diabet Foot 9:13–19

    Google Scholar 

  31. Reiber GE, Ledoux WR (2002) Epidemiology of diabetic foot ulcers and amputations: evidence for prevention. Evide Base Diabetes Care Wiley 641–665

  32. McInnes AD (2012) Diabetic foot disease in the United Kingdom: about time to put feet first. J Foot Ankle Res 5:1146–1186

    Google Scholar 

  33. Kung HS, Hoyer DL, Xu J (2005) Deaths: final data for national vital statistics. Braz J Microbiol 58:2004–2041

    Google Scholar 

  34. Margolis DJ, Malay DS, Hoffstad OJ, Leonard CE, MaCurdy T, Tan Y, Molina T, de Nava KL, Siegel KL (2011) Economic burden of diabetic foot ulcers and amputations

  35. International Diabetes Federation (2014) Diabetes Atlas http://www.eatlas.idf.org/media

  36. Pittet D, Harbarth S, Sudan R (2011) Andreas Voss International Conference on Prevention & Infection Control (ICPIC 2011). BMC Proc 5

  37. Pendsey S, Abbas ZG (2007) The step-by-step program for reducing diabetic foot problems: a model for the developing world. Curr Diab Rep 7:425–428

    Article  PubMed  Google Scholar 

  38. Ali SM, Basit A, Shaikh T, Mumtaz S, Hydrie MZ (2001) Diabetic foot ulcer-a prospective study. J Pak Med Assoc 51:78–81

    CAS  PubMed  Google Scholar 

  39. Reiber GE, Vileikyte L (1999) Causal pathways for incident lower-extremity ulcers in patients with diabetes from two settings. Diabetes Care 22:157–176

    Article  CAS  PubMed  Google Scholar 

  40. Wieman TJ (2003) Principles of management: the diabetic foot. Am J Surg 9:190–295

    Google Scholar 

  41. Marston WA (2003) Infection in daibetic foot ulcer. Diabetes Care 26:1701–1705

    Article  PubMed  Google Scholar 

  42. Brem H, Sheehan P, Rosenberg HJ, Schneider JS, Boulton AJ (2006) Evidence-based protocol for diabetic foot ulcers. Plast Reconstr Surg 117:193–209

    Article  CAS  Google Scholar 

  43. Deribe B, Woldemichael K, Nemera G (2014) Prevalence and factors influencing diabetic foot ulcer among diabetic patients attending Arbaminch Hospital South Ethiopia. J Diabetes Metab 5:4172–6156

    Article  Google Scholar 

  44. Ahmad W, Khan IA, Salma G, Farhan KAS, Khan I (2013) Risk factors for diabetic foot ulcer. J Ayub Med Coll Abbottabad 25:1–2

    Google Scholar 

  45. Rathur HM, Boulton AJ (2007) The diabetic foot. Clin Dermatol 25:109–120

    Article  PubMed  Google Scholar 

  46. Viswanathan V (2007) The diabetic foot: perspectives from Chennai, South India. Int J Extrem Wounds 6:34–6

    Article  Google Scholar 

  47. Spentzouris G, Labropoulos N (2009) The evaluation of lower-extremity ulcers seminar. Int Radiol 26:286–295

    Google Scholar 

  48. Baker R, Fraser RC (1995) Development of review criteria: linking guidelines and assessment of quality. Bio Med J 311:370–373

    Article  CAS  Google Scholar 

  49. Mark H (2005) Lower extremity venous anatomy. Semin Interv Radiol 22:147–156

    Article  Google Scholar 

  50. Nelson EA, Bell-Syer SE, Cullum NA, Webster J (2000) Compression for preventing recurrence of venous ulcers. Cochrane Database Syst Rev 4:CD002303

    Google Scholar 

  51. Simon LS, Mills JA (2009) Nonsteroidal anti-inflammatory drugs. New Eng J Med 302:1179–1185

    Google Scholar 

  52. Agale SV (2013) Chronic leg ulcers: epidemiology, aetiopathogenesis, and management. Ulcers

  53. Abbade LP, Lastoria S, Almeida HR, Stolf HO (2005) A sociodemographic, clinical study of patients with venous ulcer. Int J Dermatol 44:989–992

    Article  PubMed  Google Scholar 

  54. Margolis DJ, Bilker W, Santanna J, Baumgarten M (2002) Venous leg ulcer: incidence and prevalence in the elderly. J Am Acad Dermatol 46:381–392

    Article  PubMed  Google Scholar 

  55. Khan AF, Chaudhri R, Ashraf MA, Mazaffar MS, Zawar-ul-Imam S, Tanveer M (2013) Prevalence and presentation of chronic venous disease in Pakistan: a multicentre study. Phlebology 28:74–79

    Article  CAS  PubMed  Google Scholar 

  56. Rayner RCK, Keaton J, Prentice J, Santamaria N (2009) Leg ulcers: atypical presentations and associated comorbidities. Wound Pract Res 17:168–185

    Google Scholar 

  57. Sasanka CS (2012) Venous ulcers of the lower limb: where do we stand. Ind J Plast Surg 45:266–274

    Article  Google Scholar 

  58. Fu X (1998) Skin ulcers in lower extremities: the epidemiology and management in China. Int J Low r Extrem Wounds 4:4–6

    Article  Google Scholar 

  59. Shukla A, Rasik AM, Patnaik GK (2005) Depletion of reduced glutathione, ascorbic acid, vitamin E and antioxidant defence enzymes in a healing cutaneous wound. Free Radic Res 26:93–101

    Article  Google Scholar 

  60. Baker SE, Hopkinson SB, Fitchmun M, Andreason GL, Frasier F, Plopper G, Quaranta V, Jones JC (1996) Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci 109:2509–2520

    CAS  PubMed  Google Scholar 

  61. Faria E, Blanes L, Hochman B, Filho MM, Ferreira L (2011) Health-related quality of life, self-esteem, and functional status of patients with leg ulcers. Wounds UK 23:4–10

    Google Scholar 

  62. Lyder CH (2003) Pressure ulcer prevention and management. JAMA 289:223–226

    Article  PubMed  Google Scholar 

  63. Fogerty MD, Abumrad NN, Nanney L, Arbogast PG, Poulose B, Barbul A (2008) Risk factors for pressure ulcers in acute care hospitals. Wound Repair Regen 16:11–18

    Article  PubMed  Google Scholar 

  64. Lyder C, Ayello E (2008) Pressure ulcers: a patient safety issue. Agency Healthcare Res Qual 8:1–33

    Google Scholar 

  65. Bluestien D, Jawaheri A (2008) Pressure ulcers: prevention, evaluation, and management. Am Fam Physician 78:1186–1194

    Google Scholar 

  66. European Pressure Ulcer Advisory Panel (2009) Prevention and treatment of pressure ulcers. http://www.npuap.org/wp-content/uploads/2012/03/Final-2009-Treatment-Technical-Report1

  67. Brown G (2003) Long-term outcomes of full-thickness pressure ulcers: healing and mortality. Ostomy Wound Manage 49:42–50

    PubMed  Google Scholar 

  68. Horn SD, Bender SA, Ferguson ML, Smout RJ, Bergstrom N, Taler G, Cook AS, Sharkey SS, Voss AC (2004) The national pressure ulcer long‐term care study: pressure ulcer development in long‐term care residents. J Am Geriatr Soc 52:359–367

    Article  PubMed  Google Scholar 

  69. Grey JE, Harding KG, Enoch S (2006) Pressure ulcers. Braz Med J 332:472–475

    Article  Google Scholar 

  70. Gunningberg L, Lindholm C, Carlsson M, Sjoden PO (2000) Effect of visco-elastic foam mattresses on the development of pressure ulcers in patients with hip fractures. J Wound Care 9:455–460

    Article  CAS  PubMed  Google Scholar 

  71. Vanderwee K, Clark M, Dealey C, Gunningberg L, Defloor T (2007) Pressure ulcer prevalence in Europe: a pilot study. J Eval Clin Pract 13:227–235

    Article  PubMed  Google Scholar 

  72. Shahin S, Jafari A, Mobli H, Rafiee S, Karimi M (2008) Effect of farm size on energy ratio for wheat production: a case study from Ardabil province of Iran American. Eurasian J Agric Environ Sci 3:604–608

    Google Scholar 

  73. Ballard N (2008) How our ICU decreased the rate of hospital acquired pressure ulcers. J Nurs Care Qual 23:92–96

    Article  PubMed  Google Scholar 

  74. Elliot R, Mckinley S, Fox V (2008) Quality improvement program to reduce the prevelence of pressure ulcer in intensive care unit (ICU). Am J Crit Care 17:328–324

    Google Scholar 

  75. Tubaishata A, Anthonyb D, Salehc M (2011) Pressure ulcers in Jordan: a point prevalence study. J Tissue Viability 20:14–19

    Article  Google Scholar 

  76. Tannen A, Dassen T, Halfens R (2009) Differences in prevalence of pressure ulcers between the Netherlands and Germany associations between risk, prevention and occurrence of pressure ulcers in hospitals and nursing homes. J Clin Nurs 18:304–305

    Article  Google Scholar 

  77. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR (1999) Guideline for prevention of surgical site infection. Am J Infect Control 27:97–132

    Article  CAS  PubMed  Google Scholar 

  78. Weigelt JA, Lipsky BA, Tabak YP, Derby KG, Kim M, Gupta V (2010) Surgical site infections: causative pathogens and associated outcomes. Am J Infect Control 38:112–120

    Article  PubMed  Google Scholar 

  79. Graham JC, Pedler SJ (2003) Surgical antibiotic prophylaxis, 3rd edn. Walker R and Edwards C, London, pp 569–581

    Google Scholar 

  80. John WD, Salmaan K, Stephen WT (2002) Antimicrobial prophylaxis in surgery, 5th edn. McGraw Hill Publications, New York, pp 2111–2122

    Google Scholar 

  81. Ameh EA, Mshelbwala PM, Nasir AA, Lukong CS, Jabo BA, Anumah MA, Nmadu PT (2009) Surgical site infection in children: prospective analysis of the burden and risk factors in a sub-Saharan African setting. Surg Infect (Larchmt) 10:105–109

    Article  Google Scholar 

  82. Boni L, Benevento A, Rovera F, Dionigi G, Giuseppe MD, Bertoglio C, Dionigi R (2006) Infective complications in laparoscopic surgery. Surg Infect (Larchmt) 7:101–109

    Article  Google Scholar 

  83. Gastmeier P, Sohr D, Rath A, Forster DH, Wischnewski N, Lacour M, Daschnerand F (2000) Repeated prevalence investigations on nosocomial infections for continuous surveillance. J Hosp Infect 45:47–53

    Article  CAS  PubMed  Google Scholar 

  84. Santos KR, Fonseca L, Bravo NGP, Filho GPP (1997) Surgical site infection: rates, etiology and resistance patterns to antimicrobials among strains isolated at Rio de Janeiro University Hospital. Infection 25:217–220

    Article  CAS  PubMed  Google Scholar 

  85. Sohn AH, Tien NP, Mai VT, Van Nho V, Hanh TN, Ewald B, Dibley M (2006) Microbiology of surgical site infections and associated antimicrobial use among Vietnamese orthopedic and neurosurgical patients. Infect Control 27:855–862

    Google Scholar 

  86. Tiberi S, Nsubuga S, Muzaale C, Lazzarin A, Scarpellini P (2010) Impact of preoperative antibiotic prophylaxis on the incidence of surgical site infection in a Ugandan Hospital. Int Conference on Healthcare Associated Infections, Fifth Decennial

  87. Khan M, Khalil J, Rooh-ul-Muqim MZ, Hassan TU, Ahmed N, Salman M, Muhammad G (2011) Rate and risk factors for surgical site infection at a tertiary care facility in Peshawar, Pakistan. J Ayub Med Coll Abbottabad 23

  88. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR (1999) Guideline for prevention of surgical site infection. Am J Infect Control 27:97–134

    Article  CAS  PubMed  Google Scholar 

  89. Mayhall CG (1993) Surgical infections including burns. Prevention and control of nosocomial infections, 2nd edn. Williams & Wilkins, Baltimore, pp 614–624

    Google Scholar 

  90. Weiss CA, Statz CL, Dahms RA, Remucal MJ, Dunn DL, Beilman GJ (1999) Six years of surgical wound infection surveillance at a tertiary care center: review of the microbiologic and epidemiological aspects of 20,007 wounds. Arch Surg 134:1041–1048

    Article  PubMed  Google Scholar 

  91. Haycock C, Laser C, Keuth J, Montefour K, Wilson M, Austin K, Coulen C, Boyle D (2005) Implementing evidence‐based practice findings to decrease postoperative sternal wound infections following open heart surgery. J Cardiovasc Nurs 20:299–305

    Article  PubMed  Google Scholar 

  92. Dellinger EP, Hausmann SM, Bratzler DW, Johnson RM, Daniel DM, Bunt KM, Baumgardner GA, Sugarman JR (2005) Hospitals collaborate to decrease surgical site infections. Am J Surg 190:9–15

    Article  PubMed  Google Scholar 

  93. Tanner J, Woodings D, Moncaster K (2006) Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev 3:1465–1478

    Google Scholar 

  94. Amábile-Cuevas CF, Byarugaba DK, Hsueh PR, Kariuki S, Okeke IN (2010) Antimicrobial resistance in developing countries. Springer, New York

    Google Scholar 

  95. Bowler PG, Duerden BI, Armstrong DG (2001) Wound microbiology and associated approaches to wound management. Clin Microbiol Rev 14:244–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Howell-Jones MJ, Wilson KEH (2005) A review of the microbiology, antibiotic usage and resistance in chronic skin wounds. J Antimicrob Chemother 55:143–149

    Article  CAS  PubMed  Google Scholar 

  97. Stephens P (2001) Skin and oral fibroblasts exhibit phenotypic differences in extracellular matrix reorganization and matrix metalloproteinase activity. Br J Dermatol 144:229–237

    Article  CAS  PubMed  Google Scholar 

  98. Madsen SM, Westh H, Danielsen L, Rosdahl VT (1996) Bacterial colonization and healing of venous leg ulcers. Apmis 104:895–899

    Article  CAS  PubMed  Google Scholar 

  99. Dow G, Browne A, Sibbald RG (1999) Infection in chronic wounds: controversies in diagnosis and treatment. Ostomy Wound Manag 45:23–24

    CAS  Google Scholar 

  100. Wolcott RD, Dowd SE, Sun Y, McKeehan T, Smith E, Rhoads D (2008) Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3:3326

    Article  CAS  Google Scholar 

  101. Shin YW, Rishya M, Sekaran M (2015) Prevalence and antibiotic susceptibility of bacteria from acute and chronic wounds in Malaysian subjects. J Infect Dev Ctries 9:936–944

    Google Scholar 

  102. Thomas S (2008) Hydrocolloid dressings in the management of acute wounds: a review of the literature. Int Wound J 5:602–613

    Article  PubMed  Google Scholar 

  103. Schmidt K, Debus ES, Jessberger ST, Ziegler U, Thiede A (2000) Bacterial population of chronic crural ulcers: is there a difference between the diabetic, the venous, and the arterial ulcer. J Microbiol 29:62–70

    CAS  Google Scholar 

  104. Fazli M, Bjarnsholt T, Kirketerp-Møller K, Jørgensen B, Andersen AS, Krogfelt KA, Givskov M, Tolker-Nielsen T (2009) Nonrandom distribution of Pseudomonas aeruginosa and Staphylococcus aureus in chronic wounds. J Clin Microbiol 47:4084–4089

    Article  PubMed  PubMed Central  Google Scholar 

  105. Daxboeck F, Goerzer E, Apfalter (2004) Isolation of Bordetella trematum from a diabetic leg ulcer. Diabet Med 21:1247–8

    Article  CAS  PubMed  Google Scholar 

  106. Bowling FL, Stickings DS, Edwards-Jones V, Armstrong DG, Boulton AJ (2009) Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination. J Foot Ankle Res 2:1–8

    Article  Google Scholar 

  107. Ahmad M, Khan TH, Ansari MN, Ahmad SF (2014) Enhanced wound healing by topical administration of d-limonene in alloxan induced diabetic mice through reduction of pro-inflammatory markers and chemokine expression. Biomed Central Genomics 15:10–29

    Google Scholar 

  108. Wysocki M, Delatour F, Faurisson F (2013) Continuous versus intermittent infusion of vancomycin in severe staphylococcal infections: prospective multicenter randomized study. Antimicrob Agents Chemother 45:2460–2467

    Article  Google Scholar 

  109. Doerler M, Eming S, Dissemond J, Wolter A, Stoffels-Weindorf M, Reich-Schupke S, Altmeyer P, Stücker M (2014) A novel epidermal growth factor–containing wound dressing for the treatment of hard-to-heal venous leg ulcers. Adv Skin Wound Care 27:456–460

    Article  PubMed  Google Scholar 

  110. Kariyama R, Mitsuhata R, Chow JW, Clewell DB, Kumon H (2000) Simple and reliable multiplex PCR assay for surveillance isolates of vancomycin-resistant enterococci. J Clin Microbiol 38:3092–3095

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Braga L, Renner JB, Schwartz TA, Woodard J, Helmick CG, Hochberg MC, Jordan JM (2009) Differences in radiographic features of knee osteoarthritis in African-Americans and Caucasians: the Johnston County Osteoarthritis Project. Osteoarthritis Cartilage 17:1554–1561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Paju S, Scannapieco F (2007) Oral biofilms, periodontitis, and pulmonary infections. Oral Dis 13:508–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Niels H, Oana C, Bjarnsholt T (2010) Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 11:1663–1674

    Google Scholar 

  114. Barbara WT, Rabih OD (2004) Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 3:177–183

    Google Scholar 

  115. James GA, Swogger E, Wolcott R, Ed P, Secor P, Sestrich J, Costerton JW, Stewart PS (2008) Biofilms in chronic wounds. Wound Repair Regen 16:37–44

    Article  PubMed  Google Scholar 

  116. Robert D. Kaplan. (2011) American interest: the wounded home front American interest: http://www.cfr.org/world/american-interest-wounded-home-front/p23550.Accessed 1 June 2015

  117. Ghafoor A, Hay ID, Rehm HAB (2011) Role of Exopolysaccharides in Pseudomonas aeruginosa Biofilm Formation and Architecture. Appl Environ Microbiol 77:5238–5246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  119. McDougald D, Rice SA, Weichart D (2011) Non culturability: adaptation or debilitation. Microb Ecol 25:1–9

    Article  Google Scholar 

  120. Mah T, Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  121. Fazli M, Bjarnsholt T, Moller K (2011) Quantitative analysis of the cellular inflammatory response against biofilm bacteria in chronic wounds. Wound Repair Regen 19:387–391

    Article  PubMed  Google Scholar 

  122. Taj Y, Essa F, Aziz F, Kazmi SU (2012) Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus. J Inf Dev Ctries 5:403–409

    Google Scholar 

  123. Attinger C, Wolcott R (2012) Clinically addressing biofilm in chronic wounds. Adv Wound Care 1:127–132

    Article  Google Scholar 

  124. Carlos J et al (2013) Biofilm formation by clinical isolates and the implications in chronic infections. Biomed Cent Inf Dis 13:47

    Google Scholar 

  125. Schaber JA et al (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53:841–853

    Article  CAS  PubMed  Google Scholar 

  126. Harris LG, Murray S, Pascoe B, Bray J, Meric G, Mageiros L et al (2016) Correction: biofilm morphotypes and population structure among Staphylococcus epidermidis from commensal and clinical samples. PLoS ONE 11(4)

  127. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) Optical sectioning of microbial biofilms. J Bacteriol 173:6558–6567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK et al (2000) Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146:2395–2407

    Article  CAS  PubMed  Google Scholar 

  129. Murga R, Stewart PS, Daly D (1995) Quantitative analysis of biofilm thickness variability. Biotechnol Bioeng 45:503–510

    Article  CAS  PubMed  Google Scholar 

  130. Beyenal H, Donovan C, Lewandowski Z, Harkin G (2004) Three-dimensional biofilm structure quantification. J Microbiol Methods 59:395–413

    Article  CAS  PubMed  Google Scholar 

  131. Wolcott RD, Rhoads DD (2008) A study of biofilm-based management in subjects with critical limb ischaemia. J Wound Care 17:145–155

    Article  CAS  PubMed  Google Scholar 

  132. Costerton JW, Stewart PS (2001) Antibiotic resistance of bacteria in biofilms. Lancet 58:135–138

    Google Scholar 

  133. Donlan RM, Costerton W (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Stewart PS, Davison WM, Steenbergen JN (2009) Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 53:3505–3507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Gilbert S, Loranger A, Daigle N, Marceau N (2002) Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J Cell Biol 154:763–774

    Article  Google Scholar 

  137. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J Immunol 175:7512–7518

    Article  CAS  PubMed  Google Scholar 

  138. Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Davison WM, Buckingham-Meyer K, Stewart PS (2007) Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189:4223–4233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Hennequin C, Robin F, Cabrolier N, Bonnet R, Forestier C (2012) Characterization of a DHA-1-producing Klebsiella pneumoniae strain involved in an outbreak and role of the AmpR regulator in virulence. Antimicrob Agents Chemother 56:288–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Roberts ME, Stewart PS (2005) Modeling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiologyl 151:75–80

    CAS  Google Scholar 

  142. Akinobu I, Asami T, Thithiwat M, Kawata K, Okabe S (2009) Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol 34:4093–4100

    Google Scholar 

  143. http://www.whasa.org/C_Region_ECapeNewsletter. Accessed 20 June 2016

Download references

Acknowledgments

This work was granted by CAPES, CNPq, FUNDECT, and FAPDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Luiz Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahim, K., Saleha, S., Zhu, X. et al. Bacterial Contribution in Chronicity of Wounds. Microb Ecol 73, 710–721 (2017). https://doi.org/10.1007/s00248-016-0867-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0867-9

Keywords

Navigation