Skip to main content

Advertisement

Log in

Evolution of an intronic microsatellite polymorphism in Toll-like receptor 2 among primates

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Nonhuman primates express varying responses to Mycobacterium tuberculosis: New World monkeys appear to be resistant to tuberculosis (TB) while Old World monkeys seem to be particularly susceptible. The aim of this study was to elucidate the presence of the regulatory guanine–thymine (GT) repeat polymorphisms in intron 2 of Toll-like receptor 2 (TLR2) associated with the development of TB in humans and to determine any variations in these microsatellite polymorphisms in primates. We sequenced the region encompassing the regulatory GT repeat microsatellites in intron 2 of TLR2 in 12 different nonhuman primates using polymerase chain reaction amplification, TA cloning, and automatic sequencing. The nonhuman primates included for this study were as follows: chimpanzee (Pan troglodytes), bonobo (Pan paniscus), gorilla (Gorilla gorilla), orangutan (Pongo pygmaeus), Celebes ape (Macaca nigra), rhesus monkey (Macaca mulatta), pigtail macaque (Macaca nemestrina), patas monkey (Erythrocebus patas), spider monkey (Ateles geoffroyi), Woolly monkey (Lagothrix lagotricha), tamarin (Saguinus labiatus), and ring-tailed lemur (Lemur catta). Nucleotide sequences encompassing the regulatory GT repeat region are similar across species and are completely conserved in great apes. However, Old World monkeys lack GT repeats altogether, while New World monkeys and ring-tailed lemurs have much more complex structures around the position of the repeats. In conclusion, the genetic structures encompassing the regulatory GT repeats in intron 2 of human TLR2 are similar among nonhuman primates. The sequence is most conserved in New World monkeys and less in Old World monkeys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Boyd Y, Goodchild M, Morroll S, Bumstead N (2001) Mapping of the chicken and mouse genes for toll-like receptor 2 (TLR2) to an evolutionarily conserved chromosomal segment. Immunogenetics 52:294–298

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (1993) Tuberculosis in imported nonhuman primates-United States, June 1990-May 1993. MMWR Morb Mortal Wkly Rep 42:572–576

    Google Scholar 

  • Chaudhary PM, Ferguson C, Nguyen V, Nguyen O, Massa HF, Eby M, Jasmin A, Trask BJ, Hood L, Nelson PS (1998) Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91:4020–4027

    PubMed  CAS  Google Scholar 

  • Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J, Fremond C, Wagner H, Kirschning C, Ryffel B (2004) Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 164:49–57

    PubMed  CAS  Google Scholar 

  • Ellegren H (2000) Heterogeneous mutation processes in human microsatellite DNA sequences. Nat Genet 24:400–402

    Article  PubMed  CAS  Google Scholar 

  • Good RC (1968) Biology of the mycobacterioses. Simian tuberculosis: immunologic aspects. Ann N Y Acad Sci 154:200–213

    Article  PubMed  CAS  Google Scholar 

  • Goodman M, Porter CA, Czelusniak J, Page SL, Schneider H, Shoshani J, Gunnell G, Groves CP (1998) Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585–598

    Article  PubMed  CAS  Google Scholar 

  • Hajishengallis G, Tapping RI, Martin MH, Nawar H, Lyle EA, Russell MW, Connell TD (2005) Toll-like receptor 2 mediates cellular activation by the B subunits of type II heat-labile enterotoxins. Infect Immun 73:1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Hirono I, Takami M, Miyata M, Miyazaki T, Han HJ, Takano T, Endo M, Aoki T (2004) Characterization of gene structure and expression of two toll-like receptors from Japanese flounder, Paralichthys olivaceus. Immunogenetics 56:38–46

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA (1999) Phylogenetic perspectives in innate immunity. Science 284:1313–1318

    Article  PubMed  CAS  Google Scholar 

  • Jault C, Pichon L, Chluba J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40:759–771

    Article  PubMed  CAS  Google Scholar 

  • Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, Fenton MJ (2001) Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol 69:1036–1044

    PubMed  CAS  Google Scholar 

  • Kopp EB, Medzhitov R (1999) The Toll-receptor family and control of innate immunity. Curr Opin Immunol 11:13–18

    Article  PubMed  CAS  Google Scholar 

  • Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997a) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997b) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91:295–298

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway C Jr (2000) Innate immune recognition: mechanisms and pathways. Immunol Rev 173:89–97

    Article  PubMed  CAS  Google Scholar 

  • Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S, Ehlers S (2002) Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169:3480–3484

    PubMed  CAS  Google Scholar 

  • Ribi E, Anacker RL, Barclay WR, Brehmer W, Harris SC, Leif WR, Simmons J (1971) Efficacy of mycobacterial cell walls as a vaccine against airborne tuberculosis in the Rheusus monkey. J Infect Dis 123:527–538

    PubMed  CAS  Google Scholar 

  • Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF (1998) A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA 95:588–593

    Article  PubMed  CAS  Google Scholar 

  • Rothschild BM, Martin LD, Lev G, Bercovier H, Bar-Gal GK, Greenblatt C, Donoghue H, Spigelman M, Brittain D (2001) Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present. Clin Infect Dis 33:305–311

    Article  PubMed  CAS  Google Scholar 

  • Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2:947–950

    Article  PubMed  CAS  Google Scholar 

  • Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J Biol Chem 274:17406–17409

    Article  PubMed  CAS  Google Scholar 

  • Scott GBD (1992) Comparative primate pathology. Oxford University Press, Oxford

    Google Scholar 

  • Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451

    Article  PubMed  CAS  Google Scholar 

  • Tautz D, Schlotterer C (1994) Simple sequences. Curr Opin Genet Dev 4:832–837

    Article  PubMed  CAS  Google Scholar 

  • Thompson J, Higgins D, Gibson T (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Underhill DM, Ozinsky A, Smith KD, Aderem A (1999) Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA 96:14459–14463

    Article  PubMed  CAS  Google Scholar 

  • Webster MT, Smith NG, Ellegren H (2002) Microsatellite evolution inferred from human-chimpanzee genomic sequence alignments. Proc Natl Acad Sci USA 99:8748–8753

    Article  PubMed  CAS  Google Scholar 

  • Werts C, Tapping RI, Mathison JC, Chuang TH, Kravchenko V, Saint Girons I, Haake DA, Godowski PJ, Hayashi F, Ozinsky A, Underhill DM, Kirschning CJ, Wagner H, Aderem A, Tobias PS, Ulevitch RJ (2001) Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat Immunol 2:346–352

    Article  PubMed  CAS  Google Scholar 

  • West CS, Vainisi SJ, Vygantas CM, Beluhan FZ (1981) Intraocular granulomas associated with tuberculosis in primates. J Am Vet Med Assoc 179:1240–1244

    PubMed  CAS  Google Scholar 

  • Wieland CW, Knapp S, Florquin S, de Vos AF, Takeda K, Akira S, Golenbock DT, Verbon A, van der Poll T (2004) Non-mannose-capped lipoarabinomannan induces lung inflammation via toll-like receptor 2. Am J Respir Crit Care Med 170:1367–1374

    Article  PubMed  Google Scholar 

  • Yim JJ, Ding L, Schaffer AA, Park GY, Shim YS, Holland SM (2004) A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol Med Microbiol 40:163–169

    Article  PubMed  CAS  Google Scholar 

  • Yim JJ, Lee HW, Lee HS, Kim YW, Han SK, Shim YS, Holland SM (2006) The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun 7:150–155

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D (1999) Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 163:1–5

    PubMed  CAS  Google Scholar 

  • Zhu Y, Queller DC, Strassmann JE (2000) A phylogenetic perspective on sequence evolution in microsatellite loci. J Mol Evol 50:324–338

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Holland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yim, JJ., Adams, A.A., Kim, J.H. et al. Evolution of an intronic microsatellite polymorphism in Toll-like receptor 2 among primates. Immunogenetics 58, 740–745 (2006). https://doi.org/10.1007/s00251-006-0141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0141-2

Keywords

Navigation