Skip to main content
Log in

Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium

  • Applied Microbial and Cell Physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

When Phanerochaete chrysosporium was grown with laminarin (a β-1,3/1,6-glucan) as the sole carbon source, a β-1,3-glucanase with a molecular mass of 36 kDa was produced as a major extracellular protein. The cDNA encoding this enzyme was cloned, and the deduced amino acid sequence revealed that this enzyme belongs to glycoside hydrolase family 16; it was named Lam16A. Recombinant Lam16A, expressed in the methylotrophic yeast Pichia pastoris, randomly hydrolyzes linear β-1,3-glucan, branched β-1,3/1,6-glucan, and β-1,3-1,4-glucan, suggesting that the enzyme is a typical endo-1,3(4)-β-glucanase (EC 3.2.1.6) with broad substrate specificity for β-1,3-glucans. When laminarin and lichenan were used as substrates, Lam16A produced 6-O-glucosyl-laminaritriose (β-d-Glcp-(1–>6)-β-d-Glcp-(1–>3)-β-d-Glcp-(1–>3)-d-Glc) and 4-O-glucosyl-laminaribiose (β-d-Glcp-(1–>4)-β-d-Glcp-(1–>3)-d-Glc), respectively, as one of the major products. These results suggested that the enzyme strictly recognizes β-d-Glcp-(1–>3)-d-Glcp at subsites −2 and −1, whereas it permits 6-O-glucosyl substitution at subsite +1 and a β-1,4-glucosidic linkage at the catalytic site. Consequently, Lam16A generates non-branched oligosaccharide from branched β-1,3/1,6-glucan and, thus, may contribute to the effective degradation of such molecules in combination with other extracellular β-1,3-glucanases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Asano T, Taki J, Yamamoto M, Aono R (2002) Cloning and structural analysis of bglM gene coding for the fungal cell wall-lytic β-1,3-glucan-hydrolase BglM of Bacillus circulans IAM1165. Biosci Biotechnol Biochem 66:1246–1255

    PubMed  CAS  Google Scholar 

  • Aono R, Hammura M, Yamamoto M, Asano T (1995) Isolation of extracellular 28- and 42-kilodalton β-1,3-glucanases and comparison of three β-1,3-glucanases produced by Bacillus circulans IAM1165. Appl Environ Microbiol 61:122–129

    PubMed  PubMed Central  CAS  Google Scholar 

  • Bang ML, Villadsen I, Sandal T (1999) Cloning and characterization of an endo-β-1,3(4) glucanase and an aspartic protease from Phaffia rhodozyma CBS 6938. Appl Microbiol Biotechnol 51:215–222

    PubMed  CAS  Google Scholar 

  • Barbeyron T, Gerard A, Potin P, Henrissat B, Kloareg B (1998) The kappa-carrageenase of the marine bacterium Cytophaga drobachiensis. Structural and phylogenetic relationships within family-16 glycoside hydrolases. Mol Biol Evol 15:528–537

    PubMed  CAS  Google Scholar 

  • Bes B, Pettersson B, Lennholm H, Iversen T, Eriksson K-E (1987) Synthesis, structure, and enzymatic degradation of an extracellular glucan produced in nitrogen-starved cultures of the white rot fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem 9:310–318

    CAS  Google Scholar 

  • Bull AT, Chesters CG (1966) The biochemistry of laminarin and the nature of laminarinase. Adv Enzymol Relat Areas Mol Biol 28:325–364

    PubMed  CAS  Google Scholar 

  • Copa-Patio JL, Broda P (1994) A Phanerochaete chrysosporium β-d-glucosidase/β-d-xylosidase with specificity for (1–>3)-β-d-glucan linkages. Carbohydr Res 253:265–275

    Google Scholar 

  • Copa-Patio JL, Reyes F, Perez-Leblic MI (1989) Purification and properties of a 1,3-β-glucanase from Penicillium oxalicum autolysates. FEMS Microbiol Lett 65:285–292

    Google Scholar 

  • Fontaine T, Hartland RP, Beauvais A, Diaquin M, Latge J-P (1997a) Purification and characterization of an endo-1,3-β-glucanase from Aspergillus fumigatus. Eur J Biochem 243:315–321

    PubMed  CAS  Google Scholar 

  • Fontaine T, Hartland RP, Diaquin M, Simenel C, Latge JP (1997b) Differential patterns of activity displayed by two exo-β-1,3-glucanases associated with Aspergillus fumigatus cell wall. J Bacteriol 179:3154–3163

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gaboriaud C, Bissery V, Benchetrit T, Mornon JP (1987) Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acid sequences. FEBS Lett 224:149–155

    PubMed  CAS  Google Scholar 

  • Gorlach JM, Van Der Knaap E, Walton JD (1998) Cloning and targeted disruption of MLG1, a gene encoding two of three extracellular mixed-linked glucanases of Cochliobolus carbonum. Appl Environ Microbiol 64:385–391

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gueguen Y, Voorhorst WGB, Van Der Oost J, De Vos WM (1997) Molecular and biochemical characterization of an endo-β-1,3-glucanase of the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 272:31258–31264

    PubMed  CAS  Google Scholar 

  • Habu N, Igarashi K, Samejima M, Pettersson B, Eriksson K-EL (1997) Enhanced production of cellobiose dehydrogenase in cultures of Phanerochaete chrysosporium supplemented with bovine calf serum. Biotechnol Appl Biochem 26:97–102

    PubMed  CAS  Google Scholar 

  • Hahn M, Olsen O, Politz O, Borriss R, Heinemann U (1995a) Crystal structure and site-directed mutagenesis of Bacillus maceransendo-1,3-1,4-β-glucanase. J Biol Chem 270:3081–3088

    PubMed  Google Scholar 

  • Hahn M, Pons J, Planas A, Querol E, Heinemann U (1995b) Crystal structure of Bacillus licheniformis 1,3-1,4-β-d-glucan 4-glucanohydrolase at 1.8 A resolution. FEBS Lett 374:221–224

    PubMed  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycoside hydrolases based on amino acid sequence similarities. Biochem J 280:309–316

    PubMed  PubMed Central  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycoside hydrolases based on amino acid sequence similarities. Biochem J 293:781–788

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hong TY, Meng M (2003) Biochemical characterization and antifungal activity of an endo-1,3-β-glucanase of Paenibacillus sp. isolated from garden soil. J Biosci Bioeng 95:572–576

    Google Scholar 

  • Igarashi K, Tani T, Kawai R, Samejima M (2003) Family 3 β-glucosidase from cellulose-degrading culture of the white-rot fungus Phanerochaete chrysosporium is a glucan 1,3-β-glucosidase. J Biosci Bioeng 95:572–576

    PubMed  CAS  Google Scholar 

  • Igarashi K, Yoshida M, Matsumura H, Nakamura N, Ohno H, Samejima M, Nishino T (2005) Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. FEBS J 272:2869–2877

    PubMed  CAS  Google Scholar 

  • Johansson P, Brumer H, Baumann MJ, Kallas AM, Henriksson H, Denman SE, Teeri TT, Jones TA (2004) Crystal structure of a poplar xyloglucan endotransglycosylase reveal details of transglycosylation acceptor binding. Plant Cell 16:874–886

    PubMed  PubMed Central  CAS  Google Scholar 

  • Johnsrud SC, Eriksson K-E (1985) Cross-breeding of selected and mutated homokaryotic strains of Phanerochaete chrysosporium K-3: new cellulase deficient strains with increased ability to degrade lignin. Appl Microbiol Biotechnol 21:320–327

    CAS  Google Scholar 

  • Juncosa M, Pons J, Dot T, Querol E, Planas A (1994) Identification of active site carboxylic residues in Bacillus licheniformis 1,3-1,4-β-d-glucan 4-glucanohydrolase by site-directed mutagenesis. J Biol Chem 269:14530–14535

    PubMed  CAS  Google Scholar 

  • Kamada T, Fujii T, Nakagawa T, Takemaru T (1985) Changes in (1–>3)-β-glucanase activities during stipe elongation in Coprinus cinereus. Curr Microbiol 12:257–260

    CAS  Google Scholar 

  • Kawai R, Yoshida M, Tani T, Igarashi K, Ohira T, Nagasawa H, Samejima M (2003) Production and characterization of recombinant Phanerochaete chrysosporium β-glucosidase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem 67:1–7

    PubMed  CAS  Google Scholar 

  • Kawai R, Igarashi K, Kitaoka M, Ishii T, Samejima M (2004) Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1–>3)-β-glucosidease from the white-rot fungus Phanerochaete chrysosporium. Carbohydr Res 339:2851–2857

    PubMed  CAS  Google Scholar 

  • Krah M, Misselwitz R, Politz O, Thomsen KK, Welfle H, Borriss R (1998) The laminarinase from thermophilic eubacterium Rhodothermus marinus conformation, stability, and identification of active site carboxylic residues by site-directed mutagenesis. Eur J Biochem 257:101–111

    PubMed  CAS  Google Scholar 

  • Kremer SM, Wood PM (1992) Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(III) reductase. Eur J Biochem 205:133–138

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Google Scholar 

  • Malet C, Jimenez-Barbero J, Bernabe M, Brosa C, Planas A (1993) Stereochemical course and structure of the products of the enzymatic action of endo-1,3-1,4-β-d-glucan 4-glucanohydrolase from Bacillus licheniformis. Biochem J 296:753–758

    PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MD, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho, PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22:695–700

    PubMed  CAS  Google Scholar 

  • Palumbo JD, Sullivan RF, Kobayashi DY (2003) Molecular characterization and expression in Escherichia coli of three β-1,3-glucanase genes from Lysobacter enzymogenes strain N4-7. J Bacteriol 185:4362–4370

    PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen BO, Krah M, Duus DO, Thomsen KK (2000) A transglycosylating 1,3(4)-β-glucanase from Rhodothermus marinus NMR analysis of enzyme. Eur J Biochem 267:361–369

    PubMed  CAS  Google Scholar 

  • Pitson SM, Seviour RJ, McDougall BM (1993) Noncellulolytic fungal β-glucanases: their physiology and regulation. Enzyme Microb Technol 15:178–192

    PubMed  CAS  Google Scholar 

  • Pitson SM, Seviour RJ, McDougall BM, Woodward JR, Stone BA (1995) Purification and characterization of three extracellular (1–>3)-β-d-glucan glucohydrolases from the filamentous fungus Acremonium persicinum. Biochem J 308:733–741

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rapp P (1992) Formation, separation and characterization of three β-1,3-glucanases from Sclerotium glucanicum. Biochim Biophys Acta 1117:7–14

    PubMed  CAS  Google Scholar 

  • Seviour RJ, Stasinopoulos SJ, Auer DPF, Gibbs PA (1992) Production of pullulan and other expolysaccharides by filamentous fungi. Crit Rev Biotechnol 12:279–298

    CAS  Google Scholar 

  • Stahmann K-P, Schimz K-L, Sahm H (1993) Purification and characterization of four extracellular 1,3-β-glucanases of Botrytis cinerea. J Gen Microbiol 139:2833–2840

    CAS  Google Scholar 

  • Stone BA, Clarke AE (1992) Chemistry and biology of 1,3-β-glucans. La Trobe University Press, Bundoora, Australia

    Google Scholar 

  • Strohmeier M, Hrmova M, Fischer M, Harvey AJ, Fincher GB, Pleiss J (2004) Molecular modeling of family GH16 glycoside hydrolases: potential roles for xyloglucan transglucosylases/hydrolases in cell wall modification in the Poaceae. Protein Sci 13:3200–3213

    PubMed  PubMed Central  CAS  Google Scholar 

  • Vazquez-Garciduenas S, Leal-Morales CA, Herrera-Estrella A (1998) Analysis of β-1,3-glucanolytic system of the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 64:1442–1446

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wymelenberg AV, Sabat G, Martinez D, Rajangam AS, Teeri TT, Gaskell J, Kersten PJ, Cullen D (2005) The Phanerochaete chrysosporium secretome: database predictions and initial mass spectrometry peptide identifications in cellulose-grown medium. J Biotechnol 118:17–34

    PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by a Grants-in-Aid for Scientific Research to M.S. (no. 17380102) and K.I. (no. 15780206) from the Japanese Ministry of Education, Culture, Sports and Technology, and a Research Fellowship to R.K. (No. 11536) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Samejima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawai, R., Igarashi, K., Yoshida, M. et al. Hydrolysis of β-1,3/1,6-glucan by glycoside hydrolase family 16 endo-1,3(4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium . Appl Microbiol Biotechnol 71, 898–906 (2006). https://doi.org/10.1007/s00253-005-0214-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0214-4

Keywords

Navigation