Skip to main content
Log in

Role of autophagy and its significance in cellular homeostasis

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Autophagy is a catabolic pathway that regulates homeostasis in cells. It is an exceptional pathway of membrane trafficking. Autophagy is characterized by the formation of double-membrane vesicles; autophagosomes that are responsible for delivering damaged organelle and extra proteins to lysosome for recycling. A series of actions including environmental and genetic factors are responsible for induction of autophagy. In the past few decades, the research on autophagy has been immensely expanded because it is a vital process in maintaining cellular balance as well as deeply connected with pathogenesis of a number of diseases. The aim of this review is to present an overview of modern work on autophagy and highlight some essential genetic role in the induction of autophagy. There is an emerging need to identify, quantify, and manipulate the pathway of autophagy, due to its close relationship with a variety of developmental pathways and functions especially in cancer, diabetes, neurodegenerative disorders, and infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aita VM, Liang XH, Murty VV (1999) Cloning and genomic organization of Beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59:59–65

    CAS  PubMed  Google Scholar 

  • Al Rawi S, Louvet-Vallée S, Djeddi A, Sachse M, Culetto E, Hajjar C (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334:1144–1147

    CAS  PubMed  Google Scholar 

  • Andón FT, Fadeel B (2013) Programmed cell death: molecular mechanisms and implications for safety assessment of nanomaterials. Acc Chem Res 46:733–742

    PubMed  Google Scholar 

  • Arduino DM, Esteves AR, Cardoso SM (2013) Mitochondria drive autophagy pathology via microtubule disassembly: a new hypothesis for Parkinson disease. Autophagy 9:112–114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bjorkoy G (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    PubMed Central  PubMed  Google Scholar 

  • Choi J, Sullards MC, Olzmann JA, Rees HD, Weintraub ST, Bostwick DE (2006) Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 281:10816–10824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12:1509–1518

    CAS  PubMed  Google Scholar 

  • Crighton D, Wilkinson S, O’Prey J, Syed N, Smith P, Harrison PR (2006) DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126:121–134

    CAS  PubMed  Google Scholar 

  • Criollo A, Maiuri MC, Tasdemir E, Vitale I, Fiebig AA, Andrews D, Molgo J, Díaz J, Lavandero S, Harper F, Pierron G, Di Stefano D, Rizzuto R, Szabadkai G, Kroemer G (2007) Regulation of autophagy by the inositol trisphosphate receptor. Cell Death Differ 14:1029–1039

    CAS  PubMed  Google Scholar 

  • Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperson-mediated autophagy. Science 305:1292–1295

    CAS  PubMed  Google Scholar 

  • Daido S (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64:4286–4293

    CAS  PubMed  Google Scholar 

  • Dalibor M, Mark P, Rodney J, Devenish (2011) Microautophagy in mammalian cells Revisiting a 40-year-old conundrum. Autophagy 7: 673–682

  • Demarchi F, Bertoli C, Copetti T, Tanida I, Brancolini C, Eskelinen EL, Schneider C (2006) Calpain is required for macroautophagy in mammalian cells. J Cell Biol 175:595–605

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dingyu H, Qin L, Bo L, Rongji D, Lina G, Yulin D (2009) Normobaric hypoxia-induced brain damage and mechanism in Wistar rat. J Biomed Sci Eng 02:632–636. doi:10.4236/jbise.2009.28092

    Google Scholar 

  • Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NFkB activation represses tumor necrosis factor-induced autophagy. J Biol Chem 281:30373–30382

    CAS  PubMed  Google Scholar 

  • Ferté C, André F, Soria JC (2010) Molecular circuits of solid tumors: prognostic and predictive tools for bedside use. Nat Rev Clin Oncol 7:367–380

    PubMed  Google Scholar 

  • Furuya D, Tsuji N, Yagihashi A, Watanabe N (2005) Beclin 1augmented cis-diamminedichloroplatinum induced apoptosis via enhancing caspase-9 activity. Exp Cell Res 307:26–40

    CAS  PubMed  Google Scholar 

  • Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gelino S, Hansen M (2012) Autophagy—an emerging anti-aging mechanism. J Clin Exp Pathol 4:1–35

    Google Scholar 

  • Ghavami S, Cunnington RH, Yeganeh B, Davies JJ, Rattan SG, Bathe K, Kavosh M, Los MJ, Freed DH, Klonisch T, Pierce GN, Halayko AJ, Dixon IM (2012) Autophagy regulates transfatty acid-mediated apoptosis in primary cardiac myofibroblasts. Biochim Biophys Acta 1823:2274–2286

    CAS  PubMed  Google Scholar 

  • Ghavami S, Shojaei S, Yeganeh B (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49

    CAS  PubMed  Google Scholar 

  • Hashemi M, Fazaeli A, Ghavami S, Eskandari-Nasab E, Arbabi F, Mashhadi MA, Taheri M, Chaabane W, Jain MV, Los MJ (2013) Functional polymorphisms of FAS and FASL gene and risk of breast cancer—pilot study of 134 cases. PLoS ONE 8:e53075

    CAS  PubMed Central  PubMed  Google Scholar 

  • He H, Dang Y, Dai F, Guo Z, Wu J, She X, Pei Y, Chen Y, Ling W, Wu C, Zhao S, Liu JO, Yu L (2000) Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 278:29278–29287

    Google Scholar 

  • Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004

    CAS  PubMed  Google Scholar 

  • HoyerHansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-β, and Bcl-2. Mol Cell 25:193–205

    Google Scholar 

  • Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y (2005) Radiation induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26:1401–1410

    CAS  PubMed  Google Scholar 

  • Ivannikov MV, Macleod GT (2013) Mitochondrial free Ca2+ levels and their effects on energy metabolism in Drosophila motor nerve terminals. Biophys J 104:2353–2361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jangamreddy JR, Ghavami S, Grabarek J, Kratz G, Wiechec E, Fredriksson BA, Rao Pariti RK, Cieslar-Pobuda A, Panigrahi S, Los MJ (2013) Salinomycin induces activation of autophagy, mitophagy and affects mitochondrial polarity: differences between primary and cancer cells. Biochim Biophys Acta 1833:2057–2069

    CAS  PubMed  Google Scholar 

  • Jiang H, Wu YC, Nakamura M, Liang Y, Tanaka Y, and Holmes (2007) Parkinson’s disease genetic mutations increase cell susceptibility to stress: mutant alpha-synuclein enhances H2O2- and Sin-1-induced cell death. Neurobiol Aging 28:1709–17

  • Jiang X, Li X, Huang H, Jiang F (2013) Elevated levels of mitochondrion-associated autophagy inhibitor LRPPRC are associated with poor prognosis in patients with prostate cancer. Cancer 10:1–9

    Google Scholar 

  • Jing K, Lim K (2012) Why is autophagy important in human diseases? Exp Mol Med 44:69–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansen T, Lamark T (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy 7:279–296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juraj Koc I, Parthasarathy R, Renata B, Gerrit S, Ronald F, Yoonseong PAR (2014) Ultrastructural changes caused by Snf7 RNAi in Larval enterocytes of western corn rootworm (Diabrotica virgifera virgifera Le Conte). PLOS ONE 9:e83985

    Google Scholar 

  • Kabeya Y, Kawamata T, Suzuki K, Ohsumi Y (2007) Cis1/Atg31 is required for autophagosome formation in Saccharomyces cerevisiae. Biochem Biophys Res Commun 356:405–410

    CAS  PubMed  Google Scholar 

  • Kanazawa T, Taneike I, Akaishi R, Yohizawa F, Furuya N, Fujimura S (2003) Amino acids and insulin control autophagic proteolysis through different signaling pathways in relation to mTOR in isolated rat hepatocytes. J Biol Chem 279:8452–8459

    PubMed  Google Scholar 

  • Kaushik SC, Maria A (2012) Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol 22(8):407–417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamata T, Kamada Y, Suzuki K, Kuboshima N, Akimatsu H, Ota S, Ohsumi M, Ohsumi Y (2005) Characterization of a novel autophagy-specific gene, ATG29. Biochem Biophys Res Commun 338:1884–1889

    CAS  PubMed  Google Scholar 

  • Khan MI, Mohammad A, Patil G, Naqvi SA, Chauhan LK, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33:1477–1488

    CAS  PubMed  Google Scholar 

  • Kiffin R, Christian C, Knecht E, Cuervo AM (2004) Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15:4829–4840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001) Beclinphosphatidylinositol3-kinase complex functions at the trans-Golgi network. EMBO Rep 2:330–335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kissova B, Salin J, Schaeffer S, Bhatia S, Manon N, Camougrand N (2007) Selective and Non-selective autophagic degradation of mitochondria in yeast. Autophagy 3:329–336

    CAS  PubMed  Google Scholar 

  • Klionsky DJ (2007) Autophagy from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    CAS  PubMed  Google Scholar 

  • Kroemer G, Levine B (2008) Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9:1004–1010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kusama Y, Sato K, Kimura N, Mitamura J, Ohdaira H (2009) Comprehensive analysis of expression pattern and promoter regulation of human autophagy-related genes. Apoptosis 14:1165–1175

    PubMed  Google Scholar 

  • Lamy L, Ngo VN, Emre NC, Shaffer AL, Yang Y, Tian E, Nair V, Kruhlak MJ, Zingone A, Landgren O, Staudt LM (2013) Control of autophagic cell death by caspase-10 in multiple myeloma. Cancer Cell 23:435–449

    CAS  PubMed  Google Scholar 

  • Lee EW, Seo J, Jeong M, Lee S, Song J (2012) The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep 45:496–508

    CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    CAS  PubMed  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B (1998) Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    CAS  PubMed  Google Scholar 

  • Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M (2007) The energy sensing LKB1-AMPK pathway regulates p27 (kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224

    CAS  PubMed  Google Scholar 

  • Liu HL, Zhang YL, Yang N, Zhang YX, Liu XQ, Li CG, Zhao Y, Wang YG, Zhang GG, Yang P, Guo F, Sun Y, Jiang CY (2011) A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt-TSC2-mTOR signaling. Cell Death Dis 2:e15

    Google Scholar 

  • Lorin S, Borges A, Ribeiro Dos Santos L, Souquere S, Pierron G, Ryan KM (2009) c-Jun NH2-terminal kinase activation is essential for DRAM-dependent induction of autophagy and apoptosis in 2-methoxyestradiol-treated Ewing sarcoma cells. Cancer 69:6924–6931

    CAS  Google Scholar 

  • Manjithaya R, Nazarko TY, Farre JC, Subramani S (2010) Molecular mechanism and physiological role of pexophagy. FEBS Lett 584:1367–1373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martínez-Borra J, López-Larrea C (2012) Autophagy and self-defense. Adv Exp Med Biol 738:169–184

    PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462

    CAS  PubMed  Google Scholar 

  • Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, Meijer AJ (2006) AMP activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281:34870–34879

    CAS  PubMed  Google Scholar 

  • Metcalf DJ, Garcia-Arencibia M, Hochfeld WE, Rubinsztein DC (2010) Autophagy and misfolded proteins in neurodegeneration. Exp Neurol 238:22–28

    PubMed  Google Scholar 

  • Michelet X, Legouis R (2012) Autophagy in endosomal mutants desperately seeking to survive worm Landes. Bioscience 1:216–220

    Google Scholar 

  • Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS (2004) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci 101:3438–3443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miura M (2011) Apoptotic and non-apoptotic caspase functions in neural development. Neurochem Res 36:1253–1260

    CAS  PubMed  Google Scholar 

  • Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3:542–545

    CAS  PubMed  Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111:1233–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mortimore GE, Poso AR (1987) Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 7:539–564

    CAS  PubMed  Google Scholar 

  • Mortimore GE, Poso RA, Lardeux BR (1989) Mechanism and regulation of protein degradation in liver. Diabetes Metab Rev 5:49–70

    CAS  PubMed  Google Scholar 

  • Mujumdar N, Mackenzie T, Dudeja V, Chugh R, Antonoff M, Borja Cacho D, Sangwan V, Dawra R, Vickers SM, Saluja AK (2010) Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology 139:598–608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nawrocki ST, Carew JS, Dunner K Jr, Boise LH, Chiao PJ, Huang P, Abbruzzese JL, McConkey DJ (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519

    CAS  PubMed  Google Scholar 

  • Nijholt DAT, De Kimpe L, Elfrink HL, Hoozemans JJM, Scheper W (2011) Removing protein aggregates: the role of proteolysis in neurodegeneration. Curr Med Chem 18:2459–2476

    CAS  PubMed  Google Scholar 

  • O’Prey J, Skommer J, Wilkinson S, Ryan K (2009) Analysis of DRAM-related proteins reveals evolutionarily conserved and divergent roles in the control of autophagy. Cell Cycle 8:2260–2265

    PubMed  Google Scholar 

  • Onodera J, Oshumi Y (2005) Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 280:31582–31586

    CAS  PubMed  Google Scholar 

  • Paglin S, Hollister T, Delohery T (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444

    CAS  PubMed  Google Scholar 

  • Pankiv S (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    CAS  PubMed  Google Scholar 

  • Pattingre S, Bauvy C, Codogno P (2003) Amino acids interfere with the ERK1/2-dependent control of macroautophagy by controlling the activation of Raf-1 in human colon cancer HT-29 cells. J Biol Chem 278:16667–16674

    CAS  PubMed  Google Scholar 

  • Prasad JE, Kumar B, Andreatta C, Nahreini P, Hanson AJ, Yan XD (2004) ver expression of alpha-synuclein decreased viability and enhanced sensitivity to prostaglandinE (2), hydrogen peroxide, and a nitric oxide donor in differentiated neuroblastoma cells. J Neurosci Res 76:415–422

    CAS  PubMed  Google Scholar 

  • Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH (2005) Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280:20722–20729

    CAS  PubMed  Google Scholar 

  • Qin ZH, Wang Y, Kegel KB (2003) Autophagy regulates the processing of amino terminal huntingtin fragments. Hum Mol Genet 12:3231–3244

    CAS  PubMed  Google Scholar 

  • Qu X, Yu J, Bhagat G (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112:1809–1820

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reef S, Zalckvar E, Shifman O, Bialik S, Sabanay H, Oren M, Kimchi A (2006) A short mitochondrial form of p19ARF induces autophagy and caspase-independent cell death. Mol Cell 22:463–475

    CAS  PubMed  Google Scholar 

  • Reggiori F, Klionsky DJ (2002) Autophagy in the eukaryotic cell. Eukariotic Cell 1:11–21

    CAS  Google Scholar 

  • Ryter SW, Cloonan SM, Choi AM (2013) Autophagy: a critical regulator of cellular metabolism and homeostasis 36: 7–16

  • Saeki K (2000) BCL-2 down-regulation causes autophagy in a caspase-independent manner in human leukemic HL60 cells. Cell Death Differ 7:1263–1269

    CAS  PubMed  Google Scholar 

  • Salazar M, Carracedo A, Salanueva IJ, Hernández Tiedra S, Lorente M, Egia A, Vázquez P, Blázquez C, Torres S, García S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, González Feria L, Lovanna JL, Guzmán M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkar S, Floto R, Berger Z (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scherz-Shouval R, Shvets E, Fass E, ShorerH GL, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749–1760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroder M (2008) Endoplasmic reticulum stresses responses. Cell Mol Life Sci 65:862–894

    CAS  PubMed  Google Scholar 

  • Seglen PO, Bohley P (1992) Autophagy and other vacuolar protein degradation mechanisms. Experientia 48:158–172

    CAS  PubMed  Google Scholar 

  • ShuYan W, Chu YY, Yang YR, Li YY, He PY, Zheng YJ, Zhang C, Liu QC, Han L, Huang R (2014) Inhibition of macrophage autophagy induced by Salmonella enterica serovar typhi plasmid. Front Biosci 19:490–503

    Google Scholar 

  • Shvets E (2008) The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J Cell Sci 121:2685–2695

    CAS  PubMed  Google Scholar 

  • Suriapranata I, Epple UD, Bernreuther D, Bredschneider M, Sovarasteanu K, Thumm M (2000) The breakdown of autophagic vesicles inside the vacuole depends on Aut4p. J Cell Sci 113:4025–4033

    CAS  PubMed  Google Scholar 

  • Suzuki K (2013) Selective autophagy in budding yeast. Cell Death Differ 20:43–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki K, Ohsumi Y (2007) Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 581:2156–2161

    CAS  PubMed  Google Scholar 

  • Takeshi Noda S, Kageyama NF, Yoshimori T (2012) Three axis model for Atg recruitment in autophagy against Salmonella. Int J Cell Biol 389562:1–7

    Google Scholar 

  • Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119:301–311

    CAS  PubMed  Google Scholar 

  • Tanida I, Ueno T, Kominami E (2004) LC3 conjugation system in mammalian autophagy. Int J Biochem Cell Biol 36:2503–2518

    CAS  PubMed  Google Scholar 

  • Thorburn J, Moore F, Rao A, Barclay WW, Thomas LR, Grant KW (2005) Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway inimmortal epithelial cells. Mol Biol Cell 16:1189–1199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trempe JF, Fon EA (2013) Structure and function of Parkin, PINK1, and DJ-1, the three musketeers of neuroprotection. Front Neurol 4:38

    PubMed Central  PubMed  Google Scholar 

  • Vande Velde C (2000) BNIP3 and genetic control of necrosis like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454–5468

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 3:65–76

    Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    CAS  PubMed  Google Scholar 

  • Wu H, Yang J-M, Jin S, Zhang H, Hait WN (2006) Elongationfactor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res 66:3015–3023

    CAS  PubMed  Google Scholar 

  • Xie Z, Nair U, Klionsky DJ (2008) Dissecting autophagosome formation: the missing pieces. Autophagy 4:920–922

    CAS  PubMed  Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143:291–299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yanagisawa H, Miyashita T, Nakano Y, Yamamoto D (2003) HSPIN1, a transmembrane protein interacting with BCL-2/ BCL-X L, induces a caspase-independent autophagic cell death. Cell Death Differ 10:798–807

    CAS  PubMed  Google Scholar 

  • Yen W-L, Legakis JE, Nair U, Klionsky DJ (2007) Atg27 is required for autophagy dependent cycling of Atg9. Mol Biol Cell 18:581–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yongqiang Chen, Daniel J Klionsky (2011) The regulation of autophagy-unanswered questions. Journal of Cell Science 124: 161–170

  • Yorimitsu T, Klionsky DJ (2007) Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy 3:160–162

    CAS  PubMed  Google Scholar 

  • Yoshimoto K, Hanaoka H, Sato S, Kato T, Tabata S, Noda T, Ohsumi Y (2004) Processing of ATG8s, biquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16:2967–2983

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu L, Alva A, Su H, Dutt P, Freundt E, Welsh S, Baehrecke EH, Lenardo MJ (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    CAS  PubMed  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin1, an autophagy gene essential for early embryonic development, is a haplo insufficient tumor suppressor. Proc Natl Acad Sci 100:15077–15082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng X, Overmeyer JH, Maltese WA (2006) Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 119:2503–2518

    Google Scholar 

  • Zhang Y, Hong MA1, Bingjie X, Chao H, Chen W, Hong Q, Yulin D (2013a) Alpha-synuclein overexpression induced mitochondrial damage by the generation of endogenous neurotoxins in PC12 cells. Neurosci Lett 547:65–69

    CAS  PubMed  Google Scholar 

  • Zhang Y, Wang H, Chengjun Lai L, Wang YD (2013b) Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity. Astrobiol Vol 13

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulin Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, M.U.F., Deng, Y. Role of autophagy and its significance in cellular homeostasis. Appl Microbiol Biotechnol 98, 5319–5328 (2014). https://doi.org/10.1007/s00253-014-5721-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5721-8

Keywords

Navigation