Skip to main content
Log in

Eukaryotic aggresomes: from a model of conformational diseases to an emerging type of immobilized biocatalyzers

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Unraveling the characteristics and putative applications of naturally occurring protein aggregates has received an increasing interest during the last years. For example, the finding that the proteins embedded within bacterial inclusion bodies are, at least partially, biologically functional opened new opportunities for their rational design and application as naturally self-immobilized biocatalysts or as new drug delivery systems (“nanopills”). In another scenario, it is well established that “conformational diseases” are caused by misfolding and protein aggregation in different cells and tissues. The presence of such protein aggregates is a hallmark of these conditions, therefore becoming an excellent target for new therapeutic approaches for such devastating pathologies. Aggresomes are protein aggregates found in eukaryotic cells when the intracellular protein degradation machinery is overtitered. These protein-based nanoparticles are increasingly becoming excellent models in studies aimed to obtain a better understanding and control over protein aggregation processes in eukaryotic cells. In this work, we focus on some of the latest findings in the field of putative aggresome applications in biotechnology, as a new type of self-assembled immobilized biocatalysts, and in nanomedicine, mainly on their relationship with conformational diseases and the rational design of better therapeutics through a deeper understanding of protein aggregation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Askanas V, Engel WK (2001) Inclusion-body myositis: newest concepts of pathogenesis and relation to aging and Alzheimer disease. J Neuropathol Exp Neurol 60:1–14

    Article  PubMed  CAS  Google Scholar 

  • Askanas V, Engel WK (2008) Inclusion-body myositis: muscle-fiber molecular pathology and possible pathogenic significance of its similarity to Alzheimer’s and Parkinson’s disease brains. Acta Neuropathol 116:583–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Askanas V, Engel WK (2003) Proposed pathogenetic cascade of inclusion-body myositis: importance of amyloid-beta, misfolded proteins, predisposing genes, and aging. Curr Opin Rheumatol 15:737–744

    Article  PubMed  CAS  Google Scholar 

  • Aston-Mourney K, Zraika S, Udayasankar J, Subramanian SL, Green PS, Kahn SE, Hull RL (2013) Matrix metalloproteinase-9 reduces islet amyloid formation by degrading islet amyloid polypeptide. J Biol Chem 288:3553–3559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed Engl 44:7852–7872

    Article  PubMed  CAS  Google Scholar 

  • Bartolini M, Andrisano V (2010) Strategies for the inhibition of protein aggregation in human diseases. Chembiochem 11:1018–1035

    Article  PubMed  CAS  Google Scholar 

  • Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158

    Article  PubMed  CAS  Google Scholar 

  • Cano-Garrido O, Rodriguez-Carmona E, Díez-Gil C, Vazquez E, Elizondo E, Cubarsi R, Seras-Franzoso J, Corchero JL, Rinas U, Ratera I, Ventosa N, Veciana J, Villaverde A, Garcia-Fruitos E (2013) Supramolecular organization of protein-releasing functional amyloids solved in bacterial inclusion bodies. Acta Biomater 9:6134–6142

    Article  PubMed  CAS  Google Scholar 

  • Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Carrio M, Gonzalez-Montalban N, Vera A, Villaverde A, Ventura S (2005) Amyloid-like properties of bacterial inclusion bodies. J Mol Biol 347:1025–1037

    Article  PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    Article  PubMed  CAS  Google Scholar 

  • Chiba Y, Takei S, Kawamura N, Kawaguchi Y, Sasaki K, Hasegawa-Ishii S, Furukawa A, Hosokawa M, Shimada A (2012) Immunohistochemical localization of aggresomal proteins in glial cytoplasmic inclusions in multiple system atrophy. Neuropathol Appl Neurobiol 38:559–571

    Article  PubMed  CAS  Google Scholar 

  • Dahl JU, Gray MJ, Jakob U (2015) Protein quality control under oxidative stress conditions. J Mol Biol 427:1549–1563

    Article  PubMed  CAS  Google Scholar 

  • de Groot NS, Sabate R, Ventura S (2009) Amyloids in bacterial inclusion bodies. Trends Biochem Sci 34:408–416

    Article  PubMed  CAS  Google Scholar 

  • de Groot NS, Ventura S (2006a) Effect of temperature on protein quality in bacterial inclusion bodies. FEBS Lett 580:6471–6476

    Article  PubMed  CAS  Google Scholar 

  • de Groot NS, Ventura S (2006b) Protein activity in bacterial inclusion bodies correlates with predicted aggregation rates. J Biotechnol 125:110–113

    Article  PubMed  CAS  Google Scholar 

  • Dehvari N, Mahmud T, Persson J, Bengtsson T, Graff C, Winblad B, Ronnback A, Behbahani H (2012) Amyloid precursor protein accumulates in aggresomes in response to proteasome inhibitor. Neurochem Int 60:533–542

    Article  PubMed  CAS  Google Scholar 

  • Dickerson TJ, Reed NN, Janda KD (2002) Soluble polymers as scaffolds for recoverable catalysts and reagents. Chem Rev 102:3325–3344

    Article  PubMed  CAS  Google Scholar 

  • Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  PubMed  CAS  Google Scholar 

  • Doi H, Mitsui K, Kurosawa M, Machida Y, Kuroiwa Y, Nukina N (2004) Identification of ubiquitin-interacting proteins in purified polyglutamine aggregates. FEBS Lett 571:171–176

    Article  PubMed  CAS  Google Scholar 

  • Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker EE (2008) EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15:558–566

    Article  PubMed  CAS  Google Scholar 

  • Francioso A, Punzi P, Boffi A, Lori C, Martire S, Giordano C, D’Erme M, Mosca L (2015) Beta-sheet interfering molecules acting against beta-amyloid aggregation and fibrillogenesis. Bioorg Med Chem 23:1671–1683

    Article  PubMed  CAS  Google Scholar 

  • Fratta P, Engel WK, McFerrin J, Davies KJ, Lin SW, Askanas V (2005) Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. Am J Pathol 167:517–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Fruitos E, Aris A, Villaverde A (2007a) Localization of functional polypeptides in bacterial inclusion bodies. Appl Environ Microbiol 73:289–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Fruitos E, Gonzalez-Montalban N, Morell M, Vera A, Ferraz RM, Aris A, Ventura S, Villaverde A (2005) Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins. Microb Cell Factories 4:27

    Article  CAS  Google Scholar 

  • Garcia-Fruitos E, Martinez-Alonso M, Gonzalez-Montalban N, Valli M, Mattanovich D, Villaverde A (2007b) Divergent genetic control of protein solubility and conformational quality in Escherichia coli. J Mol Biol 374:195–205

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Fruitos E, Sabate R, de Groot NS, Villaverde A, Ventura S (2011) Biological role of bacterial inclusion bodies: a model for amyloid aggregation. FEBS J 278:2419–2427

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata R, Bebok Z, Sorscher EJ, Sztul ES (1999) Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. J Cell Biol 146:1239–1254

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Mata R, Gao YS, Sztul E (2002) Hassles with taking out the garbage: aggravating aggresomes. Traffic 3:388–396

    Article  PubMed  CAS  Google Scholar 

  • Georgiou G, Valax P (1996) Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7:190–197

    Article  PubMed  CAS  Google Scholar 

  • Gershon ND, Porter KR, Trus BL (1985) The cytoplasmic matrix: its volume and surface area and the diffusion of molecules through it. Proc Natl Acad Sci U S A 82:5030–5034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghosh AK, Gemma S, Tang J (2008) Beta-secretase as a therapeutic target for Alzheimer’s disease. Neurotherapeutics 5:399–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glabe CG (2006) Common mechanisms of amyloid oligomer pathogenesis in degenerative disease. Neurobiol Aging 27:570–575

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Montalban N, Garcia-Fruitos E, Villaverde A (2007) Recombinant protein solubility—does more mean better? Nat Biotechnol 25:718–720

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Montalban N, Natalello A, Garcia-Fruitos E, Villaverde A, Doglia SM (2008) In situ protein folding and activation in bacterial inclusion bodies. Biotechnol Bioeng 100:797–802

    Article  PubMed  CAS  Google Scholar 

  • Guerrero-Munoz MJ, Castillo-Carranza DL, Kayed R (2014) Therapeutic approaches against common structural features of toxic oligomers shared by multiple amyloidogenic proteins. Biochem Pharmacol 88:468–478

    Article  PubMed  CAS  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Bradner JE, Wong J, Chauhan D, Richardson P, Schreiber SL, Anderson KC (2005) Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma. Proc Natl Acad Sci U S A 102:8567–8572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Invernizzi G, Papaleo E, Sabate R, Ventura S (2012) Protein aggregation: mechanisms and functional consequences. Int J Biochem Cell Biol 44:1541–1554

    Article  PubMed  CAS  Google Scholar 

  • Ioannou YA, Bishop DF, Desnick RJ (1992) Overexpression of human alpha-galactosidase A results in its intracellular aggregation, crystallization in lysosomes, and selective secretion. J Cell Biol 119:1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Johnston JA, Dalton MJ, Gurney ME, Kopito RR (2000) Formation of high molecular weight complexes of mutant Cu, Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 97:12571–12576

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnston JA, Illing ME, Kopito RR (2002) Cytoplasmic dynein/dynactin mediates the assembly of aggresomes. Cell Motil Cytoskeleton 53:26–38

    Article  PubMed  CAS  Google Scholar 

  • Johnston JA, Ward CL, Kopito RR (1998) Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Junn E, Lee SS, Suhr UT, Mouradian MM (2002) Parkin accumulation in aggresomes due to proteasome impairment. J Biol Chem 277:47870–47877

    Article  PubMed  CAS  Google Scholar 

  • Kalmar B, Novoselov S, Gray A, Cheetham ME, Margulis B, Greensmith L (2008) Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem 107:339–350

    Article  PubMed  CAS  Google Scholar 

  • Kastelic M, Kalyuzhnyi YV, Hribar-Lee B, Dill KA, Vlachy V (2015) Protein aggregation in salt solutions. Proc Natl Acad Sci U S A 112:6766–6770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L (2004) Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med 10:402–405

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR (1997) ER quality control: the cytoplasmic connection. Cell 88:427–430

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  PubMed  CAS  Google Scholar 

  • Kopito RR, Sitia R (2000) Aggresomes and Russell bodies. Symptoms of cellular indigestion? EMBO Rep 1:225–231

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418:291

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Bitan G (2012) Modulating self-assembly of amyloidogenic proteins as a therapeutic approach for neurodegenerative diseases: strategies and mechanisms. ChemMedChem 7:359–374

    Article  PubMed  CAS  Google Scholar 

  • Luk KC, Mills IP, Trojanowski JQ, Lee VM (2008) Interactions between Hsp70 and the hydrophobic core of alpha-synuclein inhibit fibril assembly. Biochemistry 47:12614–12625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, Singru PS, Nilsson KP, Simon R, Schubert D, Eisenberg D, Rivier J, Sawchenko P, Vale W, Riek R (2009) Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325:328–332

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maji SK, Schubert D, Rivier C, Lee S, Rivier JE, Riek R (2008) Amyloid as a depot for the formulation of long-acting drugs. PLoS Biol 6:e17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marston FA (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem J 240:1–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez-Alonso M, Garcia-Fruitos E, Villaverde A (2008a) Yield, solubility and conformational quality of soluble proteins are not simultaneously favored in recombinant Escherichia coli. Biotechnol Bioeng 101:1353–1358

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Alonso M, Gonzalez-Montalban N, Garcia-Fruitos E, Villaverde A (2009) Learning about protein solubility from bacterial inclusion bodies. Microb Cell Factories 8:4

    Article  CAS  Google Scholar 

  • Martinez-Alonso M, Gonzalez-Montalban N, Garcia-Fruitos E, Villaverde A (2008b) The functional quality of soluble recombinant polypeptides produced in Escherichia coli is defined by a wide conformational spectrum. Appl Environ Microbiol 74:7431–7433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng F, Abedini A, Plesner A, Verchere CB, Raleigh DP (2010) The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 49:8127–8133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitraki A (2010) Protein aggregation from inclusion bodies to amyloid and biomaterials. Adv Protein Chem Struct Biol 79:89–125

    Article  PubMed  CAS  Google Scholar 

  • Morell M, Bravo R, Espargaro A, Sisquella X, Aviles FX, Fernandez-Busquets X, Ventura S (2008) Inclusion bodies: specificity in their aggregation process and amyloid-like structure. Biochim Biophys Acta 1783:1815–1825

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee A, Morales-Scheihing D, Butler PC, Soto C (2015) Type 2 diabetes as a protein misfolding disease. Trends Mol Med 21:439–449

    Article  PubMed  CAS  Google Scholar 

  • Naeem A, Fazili NA (2011) Defective protein folding and aggregation as the basis of neurodegenerative diseases: the darker aspect of proteins. Cell Biochem Biophys 61:237–250

    Article  PubMed  CAS  Google Scholar 

  • Nahalka J (2008) Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to alpha-D-glucose-1-phosphate. J Ind Microbiol Biotechnol 35:219–223

    Article  PubMed  CAS  Google Scholar 

  • Nahalka J, Dib I, Nidetzky B (2008a) Encapsulation of Trigonopsis variabilis D-amino acid oxidase and fast comparison of the operational stabilities of free and immobilized preparations of the enzyme. Biotechnol Bioeng 99:251–260

    Article  PubMed  CAS  Google Scholar 

  • Nahalka J, Nidetzky B (2007) Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis D-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng 97:454–461

    Article  PubMed  CAS  Google Scholar 

  • Nahalka J, Patoprsty V (2009) Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org Biomol Chem 7:1778–1780

    Article  PubMed  CAS  Google Scholar 

  • Nahalka J, Vikartovska A, Hrabarova E (2008b) A crosslinked inclusion body process for sialic acid synthesis. J Biotechnol 134:146–153

    Article  PubMed  CAS  Google Scholar 

  • Nawrocki ST, Carew JS, Pino MS, Highshaw RA, Andtbacka RH, Dunner K Jr, Pal A, Bornmann WG, Chiao PJ, Huang P, Xiong H, Abbruzzese JL, McConkey DJ (2006) Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66:3773–3781

    Article  PubMed  CAS  Google Scholar 

  • Necula M, Breydo L, Milton S, Kayed R, van der Veer WE, Tone P, Glabe CG (2007) Methylene blue inhibits amyloid Abeta oligomerization by promoting fibrillization. Biochemistry 46:8850–8860

    Article  PubMed  CAS  Google Scholar 

  • Olzmann JA, Li L, Chin LS (2008) Aggresome formation and neurodegenerative diseases: therapeutic implications. Curr Med Chem 15:47–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ong DS, Kelly JW (2011) Chemical and/or biological therapeutic strategies to ameliorate protein misfolding diseases. Curr Opin Cell Biol 23:231–238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pastor MT, Kummerer N, Schubert V, Esteras-Chopo A, Dotti CG, de la Lopez PM, Serrano L (2008) Amyloid toxicity is independent of polypeptide sequence, length and chirality. J Mol Biol 375:695–707

    Article  PubMed  CAS  Google Scholar 

  • Pastore A, Temussi P (2012) Protein aggregation and misfolding: good or evil? J Phys Condens Matter 24:244101

    Article  PubMed  CAS  Google Scholar 

  • Peternel S, Grdadolnik J, Gaberc-Porekar V, Komel R (2008) Engineering inclusion bodies for non denaturing extraction of functional proteins. Microb Cell Factories 7:34

    Article  CAS  Google Scholar 

  • Polizzi KM, Bommarius AS, Broering JM, Chaparro-Riggers JF (2007) Stability of biocatalysts. Curr Opin Chem Biol 11:220–225

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Carmona E, Mendoza R, Ruiz-Canovas E, Ferrer-Miralles N, Abasolo I, Schwartz S Jr, Villaverde A, Corchero JL (2015) A novel bio-functional material based on mammalian cell aggresomes. Appl Microbiol Biotechnol 99:7079–7088

    Article  PubMed  CAS  Google Scholar 

  • Roessl U, Nahalka J, Nidetzky B (2010) Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 32:341–350

    Article  PubMed  CAS  Google Scholar 

  • Sah DW, Aronin N (2011) Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest 121:500–507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789

    Article  PubMed  CAS  Google Scholar 

  • Seras-Franzoso J, Peebo K, Corchero JL, Tsimbouri PM, Unzueta U, Rinas U, Dalby MJ, Vazquez E, Garcia-Fruitos E, Villaverde A. (2013a). A nanostructured bacterial bioscaffold for the sustained bottom-up delivery of protein drugs. Nanomedicine (Lond)

  • Seras-Franzoso J, Peebo K, Garcia-Fruitos E, Vazquez E, Rinas U, Villaverde A (2014) Improving protein delivery of fibroblast growth factor-2 from bacterial inclusion bodies used as cell culture substrates. Acta Biomater 10:1354–1359

    Article  PubMed  CAS  Google Scholar 

  • Seras-Franzoso J, Steurer C, Roldan M, Vendrell M, Vidaurre-Agut C, Tarruella A, Saldana L, Vilaboa N, Parera M, Elizondo E, Ratera I, Ventosa N, Veciana J, Campillo-Fernandez AJ, Garcia-Fruitos E, Vazquez E, Villaverde A (2013b) Functionalization of 3D scaffolds with protein-releasing biomaterials for intracellular delivery. J Control Release 171:63–72

    Article  PubMed  CAS  Google Scholar 

  • Sgarbossa A (2012) Natural biomolecules and protein aggregation: emerging strategies against amyloidogenesis. Int J Mol Sci 13:17121–17137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheldon RA (2007) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587

    Article  PubMed  CAS  Google Scholar 

  • Shimohata T, Sato A, Burke JR, Strittmatter WJ, Tsuji S, Onodera O (2002) Expanded polyglutamine stretches form an “aggresome”. Neurosci Lett 323:215–218

    Article  PubMed  CAS  Google Scholar 

  • Silva JL, De Moura Gallo CV, Costa DC, Rangel LP (2014) Prion-like aggregation of mutant p53 in cancer. Trends Biochem Sci 39:260–267

    Article  PubMed  CAS  Google Scholar 

  • Silva JL, Rangel LP, Costa DC, Cordeiro Y, De Moura Gallo CV. (2013). Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci Rep 33.

  • Silva JL, Vieira TC, Gomes MP, Bom AP, Lima LM, Freitas MS, Ishimaru D, Cordeiro Y, Foguel D (2010) Ligand binding and hydration in protein misfolding: insights from studies of prion and p53 tumor suppressor proteins. Acc Chem Res 43:271–279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sirangelo I, Irace G (2010) Inhibition of aggregate formation as therapeutic target in protein misfolding diseases: effect of tetracycline and trehalose. Expert Opin Ther Targets 14:1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Suhr ST, Senut MC, Whitelegge JP, Faull KF, Cuizon DB, Gage FH (2001) Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Cell Biol 153:283–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tischer W, Kasche V (1999) Immobilized enzymes: crystals or carriers? Trends Biotechnol 17:326–335

    Article  PubMed  CAS  Google Scholar 

  • Tokatlidis K, Dhurjati P, Millet J, Beguin P, Aubert JP (1991) High activity of inclusion bodies formed in Escherichia coli overproducing Clostridium thermocellum endoglucanase D. FEBS Lett 282:205–208

    Article  PubMed  CAS  Google Scholar 

  • Tyedmers J, Mogk A, Bukau B (2010) Cellular strategies for controlling protein aggregation. Nat Rev Mol Cell Biol 11:777–788

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay AK, Murmu A, Singh A, Panda AK (2012) Kinetics of inclusion body formation and its correlation with the characteristics of protein aggregates in Escherichia coli. PLoS One 7:e33951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vazquez E, Corchero JL, Burgueno JF, Seras-Franzoso J, Kosoy A, Bosser R, Mendoza R, Martinez-Lainez JM, Rinas U, Fernandez E, Ruiz-Avila L, Garcia-Fruitos E, Villaverde A (2012) Functional inclusion bodies produced in bacteria as naturally occurring nanopills for advanced cell therapies. Adv Mater 24:1742–1747

    Article  PubMed  CAS  Google Scholar 

  • Vidair CA, Huang RN, Doxsey SJ (1996) Heat shock causes protein aggregation and reduced protein solubility at the centrosome and other cytoplasmic locations. Int J Hyperth 12:681–695

    Article  CAS  Google Scholar 

  • Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283

    Article  PubMed  CAS  Google Scholar 

  • Walker LC, Diamond MI, Duff KE, Hyman BT (2013) Mechanisms of protein seeding in neurodegenerative diseases. JAMA Neurol 70:304–310

    Article  PubMed  Google Scholar 

  • Walsh DM, Selkoe DJ (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept Lett 11:213–228

    Article  PubMed  CAS  Google Scholar 

  • Walsh DM, Selkoe DJ (2007) A beta oligomers—a decade of discovery. J Neurochem 101:1172–1184

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Raleigh DP (2014) General amyloid inhibitors? A critical examination of the inhibition of IAPP amyloid formation by inositol stereoisomers. PLoS One 9:e104023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Y, Meriin AB, Costello CE, Sherman MY (2007) Characterization of proteins associated with polyglutamine aggregates: a novel approach towards isolation of aggregates from protein conformation disorders. Prion 1:128–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Wigley WC, Fabunmi RP, Lee MG, Marino CR, Muallem S, DeMartino GN, Thomas PJ (1999) Dynamic association of proteasomal machinery with the centrosome. J Cell Biol 145:481–490

    Article  PubMed  CAS  Google Scholar 

  • Worrall DM, Goss NH (1989) The formation of biologically active beta-galactosidase inclusion bodies in Escherichia coli. Aust J Biotechnol 3:28–32

    PubMed  CAS  Google Scholar 

  • Yamamoto A, Lucas JJ, Hen R (2000) Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. Cell 101:57–66

    Article  PubMed  CAS  Google Scholar 

  • Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280:5892–5901

    Article  PubMed  CAS  Google Scholar 

  • Zerovnik E (2002) Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease. Eur J Biochem 269:3362–3371

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Qian SB (2011) Chaperone-mediated hierarchical control in targeting misfolded proteins to aggresomes. Mol Biol Cell 22:3277–3288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zu T, Duvick LA, Kaytor MD, Berlinger MS, Zoghbi HY, Clark HB, Orr HT (2004) Recovery from polyglutamine-induced neurodegeneration in conditional SCA1 transgenic mice. J Neurosci 24:8853–8861

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author acknowledges the financial support received for funding our research on protein-based nanotherapeutics and biomaterials from Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR, 2014SGR-132), FIS (PS09-00165 and PI12/00327), Fundació La Marató de TV3 (TV32009-101235, TV32013-132031, and TV32013-133930), INIA (RTA2012-00028-C02-02), MINECO (BFU2010-17450, ACI2009-0919, IT2009-0021, BIO2013-41019-P, LIPOCELL TT02, and TERARMET RTC-2014-2207-1), and from the Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (NANOLYSO, NANOPROTHER, and PENTRI projects). CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions, and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The author is also indebted to the Protein Production Platform (CIBER-BBN/UAB) for helpful technical assistance during recombinant protein production and purification (http://www.ciber-bbn.es/en/programas/89-plataforma-de-produccion-de-proteinas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Corchero.

Ethics declarations

Conflict of interest

The author declares no commercial or financial conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corchero, J.L. Eukaryotic aggresomes: from a model of conformational diseases to an emerging type of immobilized biocatalyzers. Appl Microbiol Biotechnol 100, 559–569 (2016). https://doi.org/10.1007/s00253-015-7107-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7107-y

Keywords

Navigation