Skip to main content
Log in

Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Rhamnolipids produced by Pseudomonas aeruginosa are biosurfactants with a high biotechnological potential, but their extensive commercialization is limited by the potential virulence of P. aeruginosa and by restrictions in producing these surfactants in heterologous hosts. In this work, we report the characterization of P. aeruginosa strain ATCC 9027 in terms of its genome-sequence, virulence, antibiotic resistance, and its ability to produce mono-rhamnolipids when carrying plasmids with different cloned genes from the type strain PAO1. The genes that were expressed from the plasmids are those coding for enzymes involved in the synthesis of this biosurfactant (rhlA and rhlB), as well as the gene that codes for the RhlR transcriptional regulator. We confirm that strain ATCC 9027 forms part of the PA7 clade, but contrary to strain PA7, it is sensitive to antibiotics and is completely avirulent in a mouse model. We also report that strain ATCC 9027 mono-rhamnolipid synthesis is limited by the expression of the rhlAB-R operon. Thus, this strain carrying the rhlAB-R operon produces similar rhamnolipids levels as PAO1 strain. We determined that strain ATCC 9027 with rhlAB-R operon was not virulent to mice. These results show that strain ATCC 9027, expressing PAO1 rhlAB-R operon, has a high biotechnological potential for industrial mono-rhamnolipid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Maugoud AM, Lépine F, Déziel E (2010) Rhamnolipids diversity, structures, microbial origin and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  Google Scholar 

  • Abdel-Maugoud AM, Hausmann R, Lépine F, Muller MM, Déziel E (2011) Rhamnolipids: detection, analysis, biosynthesis, genetic regulation and bioengineering of production. In: Soberón-Chávez G (ed) Biosurfactants: from genes to applications, Microbiol Monographs, vol 20. Springer, Berlin Heilderberg, pp. 13–55

    Chapter  Google Scholar 

  • Abdel-Maugoud AM, Lépine F, Déziel E (2014) A stereospecific pathway diverts β-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21(1):156–164

    Article  CAS  Google Scholar 

  • Aguirre-Ramírez M, Medina G, González-Valdez A, Grosso-Becerra V, Soberón-Chávez G (2012) Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma S factor. Microbiol-UK 158:908–916

    Article  CAS  Google Scholar 

  • Angiuoli SV, Salzberg SL (2011) Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27(3):334–342

    Article  CAS  PubMed  Google Scholar 

  • Arino S, Marchal R, Vandecasteele JP (1996) Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Appl Microbiol Biotechnol 45:162–168

    Article  CAS  Google Scholar 

  • Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC-Genomics 9:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beatson SA, Whitchurch CB, Sargent JL, Levesque RC, Mattick JS (2002) Differential regulation of twitching motility and elastase production by Vfr in Pseudomonas aeruginosa. J Bacteriol 184:3605–3613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boukerb AM, Marti R, Cournoyer B (2015) Genome sequences of three strains of the Pseudomonas aeruginosa PA7 clade. Genom Announc 3:e01366–e01315. doi:10.1128/genomeA.01366-15

    Article  Google Scholar 

  • Boukerb AM, Decor A, Ribun S, Tabaroni R, Rousset A, Commin L, Buff S, Doléans-Jordheim A, Vidal S, Varrot A, Inverty A, Cournoyer B (2016) Genomic rearrangements and functional diversification of lecA and lecB lectin-coding regions impacting the efficacy of glycomimetics directed against Pseudomonas aeruginosa. Front Microbiol 7:811. doi:10.3389/fmicb.2016.00811

    Article  PubMed  PubMed Central  Google Scholar 

  • Cabrera-Valladares N, Richardson A-P, Olvera C, Treviño LG, Déziel E, Lépine F, Soberón-Chávez G (2006) Mono-rhamnolipid and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Appl Microbiol Biotechnol 73:187–194

    Article  CAS  PubMed  Google Scholar 

  • Cha M, Lee N, Kim M, Kim M, Lee S (2008) Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresource Technol 99:2192–2199

    Article  CAS  Google Scholar 

  • Chandrasekaran EV, Bemiller JN (1980) Constituent analyses of glycosaminoglycans. Methods Carbohydr Chem 8:89–96

    CAS  Google Scholar 

  • Choi MH, Xu J, Gutierrez M, Yoo T, Cho YH, Yoon SC (2011) Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative 13C NMR analysis of the products in wild type and mutants. J Biotechnol 151:30–42

    Article  CAS  PubMed  Google Scholar 

  • Croda-García G, Grosso-Becerra V, González A, Servín-González L, Soberón-Chávez G (2011) Transcriptional regulation of Pseudomonas aeruginosa rhlR: role of the Crp-ortholog Vfr (virulence factor regulator) and quorum-sensing regulators LasR and RhlR. Microbiol-UK 157:2545–2555

    Article  CAS  Google Scholar 

  • Deziel E, Lépine F, Milot F, Villemur R (2000) Mass spectrometry monitoring of rhamnolipids from a growing culture of Pseudomonas aeruginosa strain 57RP. Biochem Biophys Acta 1485:145–152

    CAS  PubMed  Google Scholar 

  • Diggle SP, Fletcher MP, Cámara M, Williams P (2011) Detection of 2-alkyl-4-quinolone using biosensors. In: Rumbaugh KP (ed) Quorum sensing: methods and protocols, methods in molecular biology, vol 692

    Chapter  Google Scholar 

  • Essar DW, Eberly L, Crawford IP (1990) Evolutionary differences in chromosomal locations of four early genes of tryptophan pathway in fluorescent Pseudomonas: DNA sequences and characterization of Pseudomonas putida trpE and trpGDC. J Bacteriol 172:867–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gellatly SL, Hancock REW (2013) Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis 67:159–173

    Article  CAS  PubMed  Google Scholar 

  • Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P, Zhang Y, Blankenberg D, Albert I, Taylor J, Miller W, Kent WJ, Nekrutenko A (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15(10):1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosso-Becerra MV, Santos-Medellín C, González-Valdez A, Méndez JL, Delgado G, Morales-Espinosa R, Servín-González L, Alcaraz LD, Soberón-Chávez G (2014a) Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC-Genomics 15:318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grosso-Becerra MV, Croda-García G, Merino E, Servín-González L, Mojica-Espinosa R, Soberón-Chávez G (2014b) Regulation of Pseudomonas aeruginosa virulence factors by two novel RNA thermometers. Proc Natl Acad Sci U S A 111:15562–15567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holloway BW (1955) Genetic recombination in Pseudomonas aeruginosa. J Gen Microbiol 13:572–581

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1990) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277(5259):680–685

    Google Scholar 

  • Law JL, Slepecky RA (1961) Assay of poly-β-hydroxybutyric acid. J Bacteriol 82:33–36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Déziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM (2006) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mai-Prochnow A, Bradbury M, Ostrikov K, Murphy AB (2015) Pseudomonas aeruginosa biofilm response and resistance to cold atmospheric pressure plasma is linked to the redox active molecule phenazine. PLoS One 10(6):e0130373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medina G, Juárez K, Valderrama B, Soberón-Chávez G (2003) Mechanism of Pseudomonas aeruginosa RhlR transcriptional regulation of the rhlAB promoter. J Bacteriol 185:5976–5983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller J (1972) In: Experiments in molecular genetics. Published by Cold Spring Harbor Laboratory (Cold Spring Harbor Laboratory, NY), pp 352–355

  • Morales-Espinosa R, Soberón-Chávez G, Delgado-Sapién G, Sandner-Miranda L, Mendez J, Gonzalez-Valencia G, Cravioto A (2012) Genetic and phenotypic characterization of a Pseudomonas aeruginosa population with high frequency of genomic islands. PLoS One 7(5):e37459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller MM, Hörmann B, Syldark C, Hausmann R (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipids production in bioreactor systems. Appl Microbiol Biotechnol 87:167–174

    Article  CAS  PubMed  Google Scholar 

  • Ochsner UA, Fietcher A, Reiser J (1994) Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem 269:19787–19795

    CAS  PubMed  Google Scholar 

  • Pearson JP, Pesci EC, Iglewski BH (1997) Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis. J Bacteriol 179:5756–5767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahim R, Ochsner U, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G (2001) Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 40:708–718

    Article  CAS  PubMed  Google Scholar 

  • Rahman PK, Randhawa KK (2015) Editorial: Microbiotechnology based surfactants and their applications. Frontiers Microbiol 1 6:1344

    Google Scholar 

  • Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S, Ren Q, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen IT (2010) Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 5:e8842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Lab Press, Cold Spring Harbor, NY

    Google Scholar 

  • Soberón-Chávez G, Aguirre-Ramírez M, Sánchez R (2005a) The Pseudomonas aeruginosa RhlA enzyme is not only involved in rhamnolipid, but also in polyhydroxyalkanoate production. J Ind Microbiol Biotechnol 32:675–677

    Article  CAS  PubMed  Google Scholar 

  • Soberón-Chávez G, Lépine F, Déziel E (2005b) Production of rhamnolipids by Pseudomonas aeruginosa. Appl Microbiol Biotechnol 68:718–725

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV (2000) Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Toribio J, Escalante AE, Soberón-Chávez G (2011) Production of rhamnolipids in bacteria other than Pseudomonas aeruginosa. European J Lipid Sci Technol 112:1082–1087

    Article  CAS  Google Scholar 

  • Wade DS, Calfee WM, Rocha ER, Ling EA, Engstrom E, Coleman JF, Pesci EC (2005) Regulation of Pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. J Bacteriol 187:4372–4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West SEH, Schweizer HP, Dall C, Sample AK, Runyen-Janeck LJ (1994) Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148:81–86

    Article  CAS  PubMed  Google Scholar 

  • Williams P, Cámara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:82–191

    Article  CAS  Google Scholar 

  • Wittgens A, Tiso T, Arndt TT, Wenk P, Hemmerick J, Müller C, Wichmann R, Küpper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank LM (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Factories 10:80

    Article  CAS  Google Scholar 

  • Zhang Y, Miller RM (1992) Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant). Appl Environ Microbiol 58:3276–3282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu K, Rock CO (2008) RhlA converts β-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the β-hydroxydecanoyl-β-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. J Bacteriol 190:3147–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the support in providing the radioactive material and the use of laboratory facilities of Guadalupe Espín of the Instituto de Biotecnología, Universidad Nacional Autónoma de México.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria Soberón-Chávez.

Ethics declarations

Funding

This work was supported in part by grant PAPIIT IN200416 (DGAPA-UNAM) and from a grant from Fundación Miguel Alemán for the project “Análisis genómico de cepas de Pseudomonas aeruginosa que presentan una respuesta de detección de quórum atípica.”

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. In particular, all mouse studies were conducted in accordance with the Guide for the Care and Use of Laboratory Animals (Committee for the Update of the Guide for the Care and Use of Laboratory Animals and Institute for Laboratory Animal Research, Washington, DC, 2011) and the Comité para el Cuidado y Uso de Animales de Laboratorio (CCUAL) and were approved by the ethics committee of Instituto de Investigaciones Biomédicas—UNAM (approval No. ID201 09/02-2010).

Electronic supplementary material

ESM 1

(PDF 5298 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grosso-Becerra, MV., González-Valdez, A., Granados-Martínez, MJ. et al. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Appl Microbiol Biotechnol 100, 9995–10004 (2016). https://doi.org/10.1007/s00253-016-7789-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7789-9

Keywords

Navigation