Skip to main content
Log in

Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee

  • Technical Report
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objective

Changes in weight-bearing subchondral bone are central to osteoarthritis (OA) pathophysiology. Using MR, knee trabecular bone is typically assessed in the axial plane, however partial volume artifacts limit the utility of MR methods for femorotibial compartment subchondral bone analysis. Oblique-coronal acquisitions may enable direct visualization and quantification of the expected increases in femorotibial subchondral trabecular bone.

Methods

MR acquisition parameters were first optimized at 3 Tesla. Thereafter, five volunteers underwent axial and coronal exams of their right knee. Each image series was evaluated visually and quantitatively. An anatomically standardized region-of-interest was placed on both the medial and lateral tibial plateaus of all coronal slices containing subchondral bone. Mean and maximum marrow signal was measured, and “bone signal” was calculated.

Results

The MR acquisition had spatial resolution 0.2 × 0.2 × 1.0 mm and acquisition time 10.5 min. The two asymptomatic knees exhibited prominent horizontal trabeculae in the tibial subchondral bone, while the one confirmed OA knee had disorganized subchondral bone and absent horizontal trabeculae. The subchondral bone signal was 8–14% higher in both compartments of the OA knee than the asymptomatic knees.

Conclusion

The weight-bearing femorotibial subchondral trabecular bone can be directly visualized and changes quantified in the coronal-oblique plane. Qualitative and quantitative assessments can be performed using the resultant images and may provide a method to discriminate between the healthy and OA knees. These methods should enable a quantitative evaluation of the role of weight-bearing subchondral bone in the natural history of knee OA to be undertaken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Moskowitz RW. Bone remodeling in osteoarthritis: subchondral and osteophytic responses. Osteoarthritis Cartilage. 1999;7:323–4.

    Article  CAS  PubMed  Google Scholar 

  2. Lajeunesse D. The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage. 2004;12(Suppl A):S34–8.

    Article  PubMed  Google Scholar 

  3. Karsdal MA, Leeming DJ, Dam EB, Henriksen K, Alexandersen P, Pastoureau P, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthritis Cartilage. 2008;16:638–46.

    Article  CAS  PubMed  Google Scholar 

  4. Lajeunesse D, Hilal G, Pelletier JP, Martel-Pelletier J. Subchondral bone morphological and biochemical alterations in osteoarthritis. Osteoarthritis Cartilage. 1999;7:321–2.

    Article  CAS  PubMed  Google Scholar 

  5. Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009;11:227.

    Article  PubMed  Google Scholar 

  6. Watt I. Osteoarthritis revisited–-again! Skelet Radiol. 2009;38:419–23.

    Article  Google Scholar 

  7. Imhof H, Breitenseher M, Kainberger F, Rand T, Trattnig S. Importance of subchondral bone to articular cartilage in health and disease. Top Magn Reson Imaging. 1999;10:180–92.

    Article  CAS  PubMed  Google Scholar 

  8. Eckstein F, Muller-Gerbl M, Putz R. Distribution of subchondral bone density and cartilage thickness in the human patella. J Anat. 1992;180(Pt 3):425–33.

    PubMed  Google Scholar 

  9. Lo GH, Zhang Y, McLennan CE, Niu J, Kiel DP, McLean RR, et al. The ratio of medial to lateral tibial plateau bone mineral density and compartment specific tibiofemoral osteoarthritis. Osteoarthritis Cartilage. 2006;14:984–90.

    Google Scholar 

  10. Kamibayashi L, Wyss UP, Cooke TD, Zee B. Changes in mean trabecular orientation in the medial condyle of the proximal tibia in osteoarthritis. Calcif Tissue Int. 1995;57:69–73.

    Article  CAS  PubMed  Google Scholar 

  11. Thambyah A, Broom N. On new bone formation in the pre-osteoarthritic joint. Osteoarthritis Cartilage. 2009;17:456–63.

    Article  CAS  PubMed  Google Scholar 

  12. Lancianese SL, Kwok E, Beck CA, Lerner AL. Predicting regional variations in trabecular bone mechanical properties within the human proximal tibia using MR imaging. Bone. 2008;43:1039–46.

    Article  PubMed  Google Scholar 

  13. Day JS, Ding M, van der Linden JC, Hvid I, Sumner DR, Weinans H. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19:914–8.

    Article  CAS  PubMed  Google Scholar 

  14. Young BD, Samii VF, Mattoon JS, Weisbrode SE, Bertone AL. Subchondral bone density and cartilage degeneration patterns in osteoarthritic metacarpal condyles of horses. Am J Vet Res. 2007;68:841–9.

    Article  PubMed  Google Scholar 

  15. Buckland-Wright JC, Lynch JA, Macfarlane DG. Fractal signature analysis measures cancellous bone organisation in macroradiographs of patients with knee osteoarthritis. Ann Rheum Dis. 1996;55:749–55.

    Article  CAS  PubMed  Google Scholar 

  16. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone changes in patients with knee osteoarthritis. A short-term longitudinal study using fractal signature analysis. Osteoarthritis Cartilage. 2005;13:463–70.

    Article  PubMed  Google Scholar 

  17. Messent EA, Ward RJ, Tonkin CJ, Buckland-Wright C. Cancellous bone differences between knees with early, definite and advanced joint space loss; a comparative quantitative macroradiographic study. Osteoarthritis Cartilage. 2005;13:39–47.

    Article  PubMed  Google Scholar 

  18. Buckland-Wright C. Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage. 2004;12(Suppl A):S10–9.

    Article  PubMed  Google Scholar 

  19. Altman RD, Hochberg M, Murphy WA Jr, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage. 1995;3(Suppl A):3–70.

    PubMed  Google Scholar 

  20. Jacobson JA, Girish G, Jiang Y, Sabb BJ. Radiographic evaluation of arthritis: degenerative joint disease and variations. Radiology. 2008;248:737–47.

    Article  PubMed  Google Scholar 

  21. Akamatsu Y, Koshino T, Saito T, Wada J. Changes in osteosclerosis of the osteoarthritic knee after high tibial osteotomy. Clin Orthop. 1997;334:207–14.

    Google Scholar 

  22. Hulet C, Sabatier JP, Souquet D, Locker B, Marcelli C, Vielpeau C. Distribution of bone mineral density at the proximal tibia in knee osteoarthritis. Calcif Tissue Int. 2002;71:315–22.

    Article  CAS  PubMed  Google Scholar 

  23. Hurwitz DE, Sumner DR, Andriacchi TP, Sugar DA. Dynamic knee loads during gait predict proximal tibial bone distribution. J Biomech. 1998;31:423–30.

    Article  CAS  PubMed  Google Scholar 

  24. Lo GH, Hunter DJ, Zhang Y, McLennan CE, Lavalley MP, Kiel DP, et al. Bone marrow lesions in the knee are associated with increased local bone density. Arthritis Rheum. 2005;52:2814–21.

    Article  PubMed  Google Scholar 

  25. Wada M, Maezawa Y, Baba H, Shimada S, Sasaki S, Nose Y. Relationships among bone mineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology (Oxford). 2001;40:499–505.

    Article  Google Scholar 

  26. Clarke S, Wakeley C, Duddy J, Sharif M, Watt I, Ellingham K, et al. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee. Skeletal Radiol. 2004;33:588–95.

    Article  CAS  PubMed  Google Scholar 

  27. McCarthy C, Cushnaghan J, Dieppe P. The predictive role of scintigraphy in radiographic osteoarthritis of the hand. Osteoarthritis Cartilage. 1994;2:25–8.

    Article  CAS  PubMed  Google Scholar 

  28. McAlindon TE, Watt I, McCrae F, Goddard P, Dieppe PA. Magnetic resonance imaging in osteoarthritis of the knee: correlation with radiographic and scintigraphic findings. Ann Rheum Dis. 1991;50:14–9.

    Article  CAS  PubMed  Google Scholar 

  29. Blumenkrantz G, Lindsey CT, Dunn TC, Jin H, Ries MD, Link TM, et al. A pilot, two-year longitudinal study of the interrelationship between trabecular bone and articular cartilage in the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:997–1005.

    Article  PubMed  Google Scholar 

  30. Techawiboonwong A, Song HK, Magland JF, Saha PK, Wehrli FW. Implications of pulse sequence in structural imaging of trabecular bone. J Magn Reson Imaging. 2005;22:647–55.

    Article  PubMed  Google Scholar 

  31. Banerjee S, Choudhury S, Han ET, Brau AC, Morze CV, Vigneron DB, et al. Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla. Magn Reson Med. 2006;56:1075–84.

    Article  CAS  PubMed  Google Scholar 

  32. Banerjee S, Han ET, Krug R, Newitt DC, Majumdar S. Application of refocused steady-state free-precession methods at 1.5 and 3 T to in vivo high-resolution MRI of trabecular bone: simulations and experiments. J Magn Reson Imaging. 2005;21:818–25.

    Article  PubMed  Google Scholar 

  33. Krug R, Banerjee S, Han ET, Newitt DC, Link TM, Majumdar S. Feasibility of in vivo structural analysis of high-resolution magnetic resonance images of the proximal femur. Osteoporos Int. 2005;16:1307–14.

    Article  PubMed  Google Scholar 

  34. Krug R, Han ET, Banerjee S, Majumdar S. Fully balanced steady-state 3D-spin-echo (bSSSE) imaging at 3 Tesla. Magn Reson Med. 2006;56:1033–40.

    Article  CAS  PubMed  Google Scholar 

  35. Ludescher B, Martirosian P, Lenk S, Machann J, Dammann F, Schick F, et al. High-resolution magnetic resonance imaging of trabecular bone in the wrist at 3 Tesla: initial results. Acta Radiol. 2005;46:306–9.

    Article  CAS  PubMed  Google Scholar 

  36. Phan CM, Matsuura M, Bauer JS, Dunn TC, Newitt D, Lochmueller EM, et al. Trabecular bone structure of the calcaneus: comparison of MR imaging at 3.0 and 1.5 T with micro-CT as the standard of reference. Radiology. 2006;239:488–96.

    Article  PubMed  Google Scholar 

  37. Bolbos RI, Zuo J, Banerjee S, Link TM, Ma CB, Li X, et al. Relationship between trabecular bone structure and articular cartilage morphology and relaxation times in early OA of the knee joint using parallel MRI at 3 T. Osteoarthritis Cartilage. 2008;16:1150–9.

    Article  CAS  PubMed  Google Scholar 

  38. Beuf O, Ghosh S, Newitt DC, Link TM, Steinbach L, Ries M, et al. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum. 2002;46:385–93.

    Article  PubMed  Google Scholar 

  39. Lindsey CT, Narasimhan A, Adolfo JM, Jin H, Steinbach LS, Link T, et al. Magnetic resonance evaluation of the interrelationship between articular cartilage and trabecular bone of the osteoarthritic knee. Osteoarthritis Cartilage. 2004;12:86–96.

    Article  CAS  PubMed  Google Scholar 

  40. Newitt DC, van Rietbergen B, Majumdar S. Processing and analysis of in vivo high-resolution MR images of trabecular bone for longitudinal studies: reproducibility of structural measures and micro-finite element analysis derived mechanical properties. Osteoporos Int. 2002;13:278–87.

    Article  CAS  PubMed  Google Scholar 

  41. Majumdar S, Kothari M, Augat P, Newitt DC, Link TM, Lin JC, et al. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties. Bone. 1998;22:445–54.

    Article  CAS  PubMed  Google Scholar 

  42. Majumdar S, Genant HK. Magnetic resonance imaging in osteoporosis. Eur J Radiol. 1995;20:193–7.

    Article  CAS  PubMed  Google Scholar 

  43. Majumdar S. Magnetic resonance imaging of trabecular bone structure. Top Magn Reson Imaging. 2002;13:323–34.

    Article  PubMed  Google Scholar 

  44. Glaser C, Burgkart R, Kutschera A, Englmeier KH, Reiser M, Eckstein F. Femoro-tibial cartilage metrics from coronal MR image data: technique, test-retest reproducibility, and findings in osteoarthritis. Magn Reson Med. 2003;50:1229–36.

    Article  PubMed  Google Scholar 

  45. Peterfy CG, Schneider E, Nevitt M. The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage. 2008;16:1433–41.

    Article  CAS  PubMed  Google Scholar 

  46. Hunter DJ, Niu J, Zhang Y, Totterman S, Tamez J, Dabrowski C, et al. Change in cartilage morphometry: a sample of the progression cohort of the osteoarthritis initiative. Ann Rheum Dis. 2009;68:349–56.

    Article  CAS  PubMed  Google Scholar 

  47. Eckstein F, Maschek S, Wirth W, Hudelmaier M, Hitzl W, Wyman B, et al. One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann Rheum Dis. 2009;68:674–9.

    Article  CAS  PubMed  Google Scholar 

  48. Issever AS, Link TM, Kentenich M, Rogalla P, Burghardt AJ, Kazakia GJ, et al. Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard. Eur Radiol. 2010;20(2):458–68.

    Article  PubMed  Google Scholar 

  49. Lo GH, Price LL, Schneider E, Majumdar S, McAlindon TE. Higher subchondral bone volume is associated with higher DXA bone mineral density and knee OA severity. Arthritis Rheum 2009; 60 Suppl 10.

Download references

Acknowledgements

Sharmila Majumdar, PhD (Department of Radiology, UCSF), encouraged this work and provided study advice and the 1.5 T trabecular bone MR images. G.L. was supported by the American College of Rheumatology/Research and Education Foundation and the Arthritis Foundation through the Arthritis Investigator Award. The research of C.E., G.S. and L.F. as well as use of the OAI 3 T MR system at Memorial Hospital of Rhode Island were funded in part by a contract from NIAMS/NIH N01-AR-2-2262. DJH was supported by an ARC Future Fellowship.

Conflict of Interest Statement

The authors of this manuscript have nothing to declare. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, E., Lo, G.H., Sloane, G. et al. Magnetic resonance imaging evaluation of weight-bearing subchondral trabecular bone in the knee. Skeletal Radiol 40, 95–103 (2011). https://doi.org/10.1007/s00256-010-0943-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-010-0943-z

Keywords

Navigation