Skip to main content

Advertisement

Log in

The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Asphericity (ASP) is a tumour shape descriptor based on the PET image. It quantitates the deviation from spherical of the shape of the metabolic tumour volume (MTV). In order to identify its biological correlates, we investigated the relationship between ASP and clinically relevant histopathological and molecular signatures in non-small-cell lung cancer (NSCLC).

Methods

The study included 83 consecutive patients (18 women, aged 66.4 ± 8.9 years) with newly diagnosed NSCLC in whom PET/CT with 18F-FDG had been performed prior to therapy. Primary tumour resection specimens and core biopsies were used for basic histopathology and determination of the Ki-67 proliferation index. EGFR status, VEGF, p53 and ALK expression were obtained in a subgroup of 44 patients. The FDG PET images of the primary tumours were delineated using an automatic algorithm based on adaptive thresholding taking into account local background. In addition to ASP, SUVmax, MTV and some further descriptors of shape and intratumour heterogeneity were assessed as semiquantitative PET measures.

Results

SUVmax, MTV and ASP were associated with pathological T stage (Kruskal-Wallis, p = 0.001, p < 0.0005 and p < 0.0005, respectively) and N stage (p = 0.017, p = 0.003 and p = 0.002, respectively). Only ASP was associated with M stage (p = 0.026). SUVmax, MTV and ASP were correlated with Ki-67 index (Spearman’s rho = 0.326/p = 0.003, rho = 0.302/p = 0.006 and rho = 0.271/p = 0.015, respectively). The latter correlations were considerably stronger in adenocarcinomas than in squamous cell carcinomas. ASP, but not SUVmax or MTV, showed a tendency for a significant association with the extent of VEGF expression (p = 0.058). In multivariate Cox regression analysis, ASP (p < 0.0005) and the presence of distant metastases (p = 0.023) were significantly associated with progression-free survival. ASP (p = 0.006), the presence of distant metastases (p = 0.010), and Ki-67 index (p = 0.062) were significantly associated with overall survival.

Conclusion

The ASP of primary NSCLCs on FDG PET images is associated with tumour dimensions and molecular markers of proliferation and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lardinois D, Weder W, Hany TF, Kamel EM, Korom S, Seifert B, et al. Staging of non-small-cell lung cancer with integrated positron-emission tomography and computed tomography. N Engl J Med. 2003;348:2500–7.

    Article  PubMed  Google Scholar 

  2. Berghmans T, Paesmans M, Sculier JP. Prognostic factors in stage III non-small cell lung cancer: a review of conventional, metabolic and new biological variables. Ther Adv Med Oncol. 2011;3:127–38. doi:10.1177/1758834011401951.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roy S, Pathy S, Kumar R, Mohanti BK, Raina V, Jaiswal A, et al. Efficacy of 18F-fluorodeoxyglucose positron emission tomography/computed tomography as a predictor of response in locally advanced non-small-cell carcinoma of the lung. Nucl Med Commun. 2016;37:129–38. doi:10.1097/MNM.0000000000000422.

    Article  CAS  PubMed  Google Scholar 

  4. Cook GJ, Yip C, Siddique M, Goh V, Chicklore S, Roy A, et al. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy? J Nucl Med. 2013;54:19–26. doi:10.2967/jnumed.112.107375.

    Article  PubMed  Google Scholar 

  5. Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU. Spatial heterogeneity in sarcoma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med. 2008;49:1973–9. doi:10.2967/jnumed.108.053397.

    Article  PubMed  PubMed Central  Google Scholar 

  6. El Naqa I, Grigsby P, Apte A, Kidd E, Donnelly E, Khullar D, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recognit. 2009;42:1162–71. doi:10.1016/j.patcog.2008.08.011.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med. 2011;52:369–78. doi:10.2967/jnumed.110.082404.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006. doi:10.1038/ncomms5006.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Apostolova I, Rogasch J, Buchert R, Wertzel H, Achenbach HJ, Schreiber J, et al. Quantitative assessment of the asphericity of pretherapeutic FDG uptake as an independent predictor of outcome in NSCLC. BMC Cancer. 2014;14:896. doi:10.1186/1471-2407-14-896.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Apostolova I, Steffen IG, Wedel F, Lougovski A, Marnitz S, Derlin T, et al. Asphericity of pretherapeutic tumour FDG uptake provides independent prognostic value in head-and-neck cancer. Eur Radiol. 2014;24:2077–87. doi:10.1007/s00330-014-3269-8.

    Article  PubMed  Google Scholar 

  11. Hofheinz F, Lougovski A, Zophel K, Hentschel M, Steffen IG, Apostolova I, et al. Increased evidence for the prognostic value of primary tumor asphericity in pretherapeutic FDG PET for risk stratification in patients with head and neck cancer. Eur J Nucl Med Mol Imaging. 2015;42:429–37. doi:10.1007/s00259-014-2953-x.

    Article  PubMed  Google Scholar 

  12. Chicklore S, Goh V, Siddique M, Roy A, Marsden PK, Cook GJ. Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging. 2013;40:133–40. doi:10.1007/s00259-012-2247-0.

    Article  PubMed  Google Scholar 

  13. Herbst RS, Heymach JV, Lippman SM. Lung cancer. N Engl J Med. 2008;359:1367–80. doi:10.1056/NEJMra0802714.

    Article  CAS  PubMed  Google Scholar 

  14. Mogi A, Kuwano H. TP53 mutations in nonsmall cell lung cancer. J Biomed Biotechnol. 2011;2011:583929. doi:10.1155/2011/583929.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herbst RS, Bunn Jr PA. Targeting the epidermal growth factor receptor in non-small cell lung cancer. Clin Cancer Res. 2003;9:5813–24.

    CAS  PubMed  Google Scholar 

  16. Nana-Sinkam SP, Powell CA. Molecular biology of lung cancer: diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143:e30S–9S. doi:10.1378/chest.12-2346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hofheinz F, Potzsch C, Oehme L, Beuthien-Baumann B, Steinbach J, Kotzerke J, et al. Automatic volume delineation in oncological PET. Evaluation of a dedicated software tool and comparison with manual delineation in clinical data sets. Nuklearmedizin. 2012;51:9–16. doi:10.3413/Nukmed-0419-11-07.

    Article  CAS  PubMed  Google Scholar 

  18. Hofheinz F, Langner J, Petr J, Beuthien-Baumann B, Steinbach J, Kotzerke J, et al. An automatic method for accurate volume delineation of heterogeneous tumors in PET. Med Phys. 2013;40:082503. doi:10.1118/1.4812892.

    Article  CAS  PubMed  Google Scholar 

  19. Barber CB, Dobkin DP, Huhdanpaa H. The Quickhull algorithm for convex hulls. ACM Trans Math Softw. 1996;22:469–83.

    Article  Google Scholar 

  20. Hatt M, Majdoub M, Vallieres M, Tixier F, Le Rest CC, Groheux D, et al. 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J Nucl Med. 2015;56:38–44. doi:10.2967/jnumed.114.144055.

    Article  CAS  PubMed  Google Scholar 

  21. Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol. 2015;60:5471–96. doi:10.1088/0031-9155/60/14/5471.

    Article  CAS  PubMed  Google Scholar 

  22. van Velden FH, Cheebsumon P, Yaqub M, Smit EF, Hoekstra OS, Lammertsma AA, et al. Evaluation of a cumulative SUV-volume histogram method for parameterizing heterogeneous intratumoural FDG uptake in non-small cell lung cancer PET studies. Eur J Nucl Med Mol Imaging. 2011;38:1636–47.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shin Y, Han S, Chung E, Chung S. Intratumoral phenotypic heterogeneity as an encourager of cancer invasion. Integr Biol (Camb). 2014;6:654–61.

    Article  CAS  Google Scholar 

  24. Yang Z, Tang LH, Klimstra DS. Effect of tumor heterogeneity on the assessment of Ki67 labeling index in well-differentiated neuroendocrine tumors metastatic to the liver: implications for prognostic stratification. Am J Surg Pathol. 2011;35:853–60. doi:10.1097/PAS.0b013e31821a0696.

    Article  PubMed  Google Scholar 

  25. Groheux D, Majdoub M, Tixier F, Le Rest CC, Martineau A, Merlet P, et al. Do clinical, histological or immunohistochemical primary tumour characteristics translate into different (18)F-FDG PET/CT volumetric and heterogeneity features in stage II/III breast cancer? Eur J Nucl Med Mol Imaging. 2015;42:1682–91. doi:10.1007/s00259-015-3110-x.

    Article  CAS  PubMed  Google Scholar 

  26. Schuurbiers OC, Meijer TW, Kaanders JH, Looijen-Salamon MG, de Geus-Oei LF, van der Drift MA, et al. Glucose metabolism in NSCLC is histology-specific and diverges the prognostic potential of 18FDG-PET for adenocarcinoma and squamous cell carcinoma. J Thorac Oncol. 2014;9:1485–93. doi:10.1097/JTO.0000000000000286.

    Article  CAS  PubMed  Google Scholar 

  27. Caicedo C, Garcia-Velloso MJ, Lozano MD, Labiano T, Vigil Diaz C, Lopez-Picazo JM, et al. Role of [18F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer. Eur J Nucl Med Mol Imaging. 2014;41:2058–65. doi:10.1007/s00259-014-2833-4.

    Article  CAS  PubMed  Google Scholar 

  28. Del Gobbo A, Pellegrinelli A, Gaudioso G, Castellani M, Zito Marino F, Franco R, et al. Analysis of NSCLC tumour heterogeneity, proliferative and 18F-FDG PET indices reveals Ki67 prognostic role in adenocarcinomas. Histopathology. 2016;68:746–51. doi:10.1111/his.12808.

    Article  PubMed  Google Scholar 

  29. Tixier F, Hatt M, Valla C, Fleury V, Lamour C, Ezzouhri S, et al. Visual versus quantitative assessment of intratumor 18F-FDG PET uptake heterogeneity: prognostic value in non-small cell lung cancer. J Nucl Med. 2014;55:1235–41. doi:10.2967/jnumed.113.133389.

    Article  CAS  PubMed  Google Scholar 

  30. Soussan M, Orlhac F, Boubaya M, Zelek L, Ziol M, Eder V, et al. Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. PLoS One. 2014;9, e94017. doi:10.1371/journal.pone.0094017.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Warth A, Cortis J, Soltermann A, Meister M, Budczies J, Stenzinger A, et al. Tumour cell proliferation (Ki-67) in non-small cell lung cancer: a critical reappraisal of its prognostic role. Br J Cancer. 2014;111:1222–9. doi:10.1038/bjc.2014.402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49–69. doi:10.1146/annurev-pathol-011110-130206.

    Article  PubMed  Google Scholar 

  33. Lee JG, Wu R. Erlotinib-cisplatin combination inhibits growth and angiogenesis through c-MYC and HIF-1alpha in EGFR-mutated lung cancer in vitro and in vivo. Neoplasia. 2015;17:190–200. doi:10.1016/j.neo.2014.12.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ranayhossaini DJ, Lu J, Mabus J, Gervais A, Lingham RB, Fursov N. EGF potentiation of VEGF production is cell density dependent in H292 EGFR wild type NSCLC cell line. Int J Mol Sci. 2014;15:17686–704. doi:10.3390/ijms151017686.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kaida H, Kawahara A, Hayakawa M, Hattori S, Kurata S, Fujimoto K, et al. The difference in relationship between 18F-FDG uptake and clinicopathological factors on thyroid, esophageal, and lung cancers. Nucl Med Commun. 2014;35:36–43. doi:10.1097/MNM.0000000000000019.

    Article  CAS  PubMed  Google Scholar 

  36. Sauter AW, Winterstein S, Spira D, Hetzel J, Schulze M, Mueller M, et al. Multifunctional profiling of non-small cell lung cancer using 18F-FDG PET/CT and volume perfusion CT. J Nucl Med. 2012;53:521–9. doi:10.2967/jnumed.111.097865.

    Article  CAS  PubMed  Google Scholar 

  37. Kaira K, Oriuchi N, Shimizu K, Ishikita T, Higuchi T, Imai H, et al. Correlation of angiogenesis with 18F-FMT and 18F-FDG uptake in non-small cell lung cancer. Cancer Sci. 2009;100:753–8. doi:10.1111/j.1349-7006.2008.01077.x.

    Article  CAS  PubMed  Google Scholar 

  38. Makinoshima H, Takita M, Matsumoto S, Yagishita A, Owada S, Esumi H, et al. Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma. J Biol Chem. 2014;289:20813–23. doi:10.1074/jbc.M114.575464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. De Rosa V, Iommelli F, Monti M, Fonti R, Votta G, Stoppelli MP, et al. Reversal of Warburg effect and reactivation of oxidative phosphorylation by differential inhibition of EGFR signaling pathways in non-small cell lung cancer. Clin Cancer Res. 2015;21:5110–20. doi:10.1158/1078-0432.CCR-15-0375.

    Article  PubMed  Google Scholar 

  40. Jakobsen JN, Sorensen JB. Clinical impact of ki-67 labeling index in non-small cell lung cancer. Lung Cancer. 2013;79:1–7. doi:10.1016/j.lungcan.2012.10.008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivayla Apostolova.

Ethics declarations

Funding

None.

Conflicts of interest

None.

Ethical approval

All procedures performed in this study were approved by the Institutional Ethics Committee (reference number, 159/13; RAD233) and were in accordance with ethical standards and with the principles of the 1964 Declaration of Helsinki and its later amendments. This article does not describe any studies with animals performed by any of the authors.

Informed consent

Informed consent for retrospective data evaluation was obtained from all participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Apostolova, I., Ego, K., Steffen, I.G. et al. The asphericity of the metabolic tumour volume in NSCLC: correlation with histopathology and molecular markers. Eur J Nucl Med Mol Imaging 43, 2360–2373 (2016). https://doi.org/10.1007/s00259-016-3452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-016-3452-z

Keywords

Navigation