Skip to main content

Advertisement

Log in

Comparison of 11C-4DST and 18F-FDG PET/CT imaging for advanced renal cell carcinoma: preliminary study

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

4′-[Methyl-11C]-thiothymidine (4DST) has been developed as an in vivo cell proliferation marker based on its DNA incorporation mechanism. This study evaluated the potential of 4DST PET/CT for imaging cellular proliferation in advanced clear cell renal cell carcinoma (RCC), compared with FDG PET/CT. Both 4DST and FDG uptake were compared with biological findings based on surgical pathology.

Methods

Five patients (3 men and 2 women; mean (±SD) age 64.8 ± 11.0 years) with a single RCC (mean diameter: 9.3 ± 3.2 cm) were examined by PET/CT using 4DST and FDG. The dynamic emission scan of 4DST for RCC over 35 min followed by a static emission scan of the body for 4DST and FDG. Then we compared the maximum standardized uptake value (SUVmax) of 20 areas of RCC on both 4DST and FDG images with (1) the Ki-67 index of cellular proliferation (2) Fuhrman grade system for nuclear grade (G) in RCC and (3) pathological phosphorylated grade of mammalian target of rapamycin (pmTOR).

Results

All patient cases showed clear uptake of FDG and 4DST in RCC tumors, with mean 4DST SUVmax of 7.3 ± 2.2 (range 4.3–9.4) and mean FDG SUVmax of 6.0 ± 2.8 (range 3.4–10.4). The correlation coefficient between SUVmax and Ki-67 index was higher with 4DST (r = 0.61) than with FDG (r = 0.43). Tumor 4DST uptake (G0: 1.4, G2: 2.6, G2 5.6, G4: 5.7) and tumor FDG uptake (G0: 1.8, G2: 2.9, G2 3.7, G4: 4.1) were both related to Fuhrman grade system. The 4DST uptake increased as the pmTOR grade increases (G0: 3.1, G1: 4.8, G2: 4.7, G3: 6.2); in contrast FDG uptake was unrelated to pmTOR grade (G0: 2.8, G2: 4.0, G2 3.3, G4: 3.6).

Conclusion

A higher correlation with the proliferation of RCC was observed for 4DST than for FDG. The 4DST uptake exhibits the possibility to predict pmTOR grade, indicating that 4DST has potential for the evaluation of therapeutic effect with mTOR inhibitor in patients with RCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nickerson ML, Jaeger E, Shi Y, et al. (2008) Improved identification of von Hippel–Lindau gene alterations in clear cell renal tumors. Clin Cancer Res 14(15):4726–4734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kaelin WG Jr (2004) The von Hippel–Lindau tumor suppressor gene and kidney cancer. Clin Cancer Res 10(18 Pt 2):6290S–6295S

    Article  CAS  PubMed  Google Scholar 

  3. Maranchie JK, Vasselli JR, Riss J, et al. (2002) The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1(3):247–255

    Article  CAS  PubMed  Google Scholar 

  4. Brugarolas J (2007) Renal-cell carcinoma—molecular pathways and therapies. N Engl J Med 356(2):185–187

    Article  CAS  PubMed  Google Scholar 

  5. Chan DA, Sutphin PD, Nguyen P et al. (2011) Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality Sci Transl Med 3(94): 94ra70

  6. Kim JW, Tchernyshyov I, Semenza GL, et al. (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185

    Article  PubMed  Google Scholar 

  7. Kang DE, White RL Jr, Zuger JH, et al. (2004) Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171(5):1806–1809

    Article  PubMed  Google Scholar 

  8. Majhail NS, Urbain JL, Albani JM, et al. (2003) F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol 21(21):3995–4000

    Article  PubMed  Google Scholar 

  9. Park JW, Jo MK, Lee HM (2009) Significance of 18F-fluorodeoxyglucose positron-emission tomography/computed tomography for the postoperative surveillance of advanced renal cell carcinoma. BJU Int 103(5):615–619

    Article  PubMed  Google Scholar 

  10. Namura K, Minamimoto R, Yao M, et al. (2010) Impact of maximum standardized uptake value (SUVmax) evaluated by 18-Fluoro-2-deoxy-d-glucose positron emission tomography /computed tomography (18F-FDG-PET/CT) on survival for patients with advanced renal cell carcinoma: a preliminary report. BMC Cancer 10:667

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lyrdal D, Boijsen M, Suurküla M, et al. (2009) Evaluation of sorafenib treatment in metastatic renal cell carcinoma with 2-fluoro-2-deoxyglucose positron emission tomography and computed tomography. Nucl Med Commun 30(7):519–524

    Article  CAS  PubMed  Google Scholar 

  12. Ueno D, Yao M, Tateishi U, et al. (2012) Early assessment by FDG-PET/CT of patients with advanced renal cell carcinoma treated with tyrosine kinase inhibitors is predictive of disease course. BMC Cancer 12:162

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kayani I, Avril N, Bomanji J, et al. (2011) Sequential FDG-PET/CT as a biomarker of response to Sunitinib in metastatic clear cell renal cancer. Clin Cancer Res 17(18):6021–6028

    Article  CAS  PubMed  Google Scholar 

  14. Minamimoto R, Nakaigawa N, Tateishi U, et al. (2010) Evaluation of response to multikinase inhibitor in metastatic renal cell carcinoma by FDG PET/contrast-enhanced CT. Clin Nucl Med 35(12):918–923

    Article  PubMed  Google Scholar 

  15. Pantuck AJ, Seligson DB, Klatte T, et al. (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109(11):2257–2267

    Article  CAS  PubMed  Google Scholar 

  16. Robb VA, Karbowniczek M, Klein-Szanto AJ, et al. (2007) Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol 177(1):346–352

    Article  PubMed  Google Scholar 

  17. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hager M, Haufe H, Lusuardi L, et al. (2011) PTEN, pAKT, and pmTOR expression and subcellular distribution in primary renal cell carcinomas and their metastases. Cancer Invest 29(7):427–438

    Article  CAS  PubMed  Google Scholar 

  19. Hudes G, Carducci M, Tomczak P, et al. (2007) Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356(22):2271–2281

    Article  CAS  PubMed  Google Scholar 

  20. Motzer RJ, Escudier B, Oudard S, et al. (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double- blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456

    Article  CAS  PubMed  Google Scholar 

  21. Chen JL, Appelbaum DE, Kocherginsky M, et al. (2013) FDG-PET as a predictive biomarker for therapy with everolimus in metastatic renal cell cancer. Cancer Med 2(4):545–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma WW, Jacene H, Song D, et al. (2009) [18F]fluorodeoxyglucose positron emission tomography correlates with Akt pathway activity but is not predictive of clinical outcome during mTOR inhibitor therapy. J Clin Oncol 27(16):2697–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peter KW, Lee ST, Murone C, et al. (2014) In vivo imaging of cellular proliferation in renal cell carcinoma using 18F-fluorothymidine PET. Asia Oceania J Nucl Med Biol 2(1):3–11

    Google Scholar 

  24. de Riese WT, Crabtree WN, Allhoff EP, et al. (1993) Prognostic significance of Ki-67 immunostaining in nonmetastatic renal cell carcinoma. J Clin Oncol 11(9):1804–1808

    PubMed  Google Scholar 

  25. Toyohara J, Nariai T, Sakata M, et al. (2011) Whole-body distribution and brain tumor imaging with 11C-4DST: a pilot study. J Nucl Med 52:1322–1328

    Article  PubMed  Google Scholar 

  26. Toyohara J, Kumata K, Fukushi K, et al. (2006) Evaluation of [methyl-14C]4′-thiothymidine for in vivo DNA synthesis imaging. J Nucl Med 47(10):1717–1722

    CAS  PubMed  Google Scholar 

  27. Toyohara J, Okada M, Toramatsu C, et al. (2008) Feasibility studies of 4′[methyl-11C]thiothymidine as a tumor proliferation imaging agent in mice. Nucl Med Biol 35(1):67–74

    Article  CAS  PubMed  Google Scholar 

  28. Minamimoto R, Toyohara J, Seike A, et al. (2012) 11C-4DST PET/CT for proliferation imaging in non-small-cell lung cancer. J Nucl Med 53:199–206

    Article  CAS  PubMed  Google Scholar 

  29. Bollineni VR, Kerner GS, Pruim J, et al. (2013) PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III–IV non-small cell lung cancer patients. J Nucl Med 54:1175–1180

    Article  CAS  PubMed  Google Scholar 

  30. Fuhrman SA, Lasky LC, Limas C (1982) Prognostic significance of morphologic parameters in renal cell carcinoma. Am J Surg Pathol 6(7):655–663

    Article  CAS  PubMed  Google Scholar 

  31. Tollefson MK, Thompson RH, Sheinin Y, et al. (2007) Ki-67 and coagulative tumor necrosis are independent predictors of poor outcome for patients with clear cell renal cell carcinoma and not surrogates for each other. Cancer 110(4):783–790

    Article  PubMed  Google Scholar 

  32. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8(9):705–713

    Article  CAS  PubMed  Google Scholar 

  33. Plas DR, Thompson CB (2005) Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24(50):7435–7442

    Article  CAS  PubMed  Google Scholar 

  34. Elstrom RL, Bauer DE, Buzzai M, et al. (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64(11):3892–3899

    Article  CAS  PubMed  Google Scholar 

  35. Bui MH, Visapaa H, Seligson D et al. (2004) Prognostic value of carbonic anhydrase IX and KI67 as predictors of survival for renal clear cell carcinoma. J Urol 171(6 pt 1)11: 2461–2466

  36. Delahunt B, Bethwaite PB, Nacey JN (2007) Outcome prediction for renal cell carcinoma: evaluation of prognostic factors for tumours divided according to histological subtype. Pathology 39(5):459–465

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in Aid for Young Scientists (B) No. 24791362 from the Japan Society for the Promotion of Science (to Ryogo Minamimoto). This work was technically supported by Fumio Sunaoka and Takuya Mitsumoto from the division of nuclear medicine, National Center for Global Health and Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryogo Minamimoto.

Ethics declarations

Disclosure

The authors have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minamimoto, R., Nakaigawa, N., Nagashima, Y. et al. Comparison of 11C-4DST and 18F-FDG PET/CT imaging for advanced renal cell carcinoma: preliminary study. Abdom Radiol 41, 521–530 (2016). https://doi.org/10.1007/s00261-015-0601-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-015-0601-y

Keywords

Navigation