Skip to main content
Log in

Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Gangliosides have diverse biological functions including modulation of immune system response. These molecules are differentially expressed on malignant cells compared with the corresponding normal ones and are involved in cancer progression affecting, in different ways, the host’s anti-tumour specific immune responses. Although in humans the N-glycolylated variant of GM3 ganglioside is almost exclusively expressed in tumour tissues, the significance of this glycolipid for malignant cell biology remains obscure, while for NAcGM3 strong immune suppressive effects have been reported. The present work demonstrates, for the first time, the capacity of NGcGM3 ganglioside to down-modulate CD4 expression in murine and human T lymphocytes, especially in non-activated T cells. Thirty and tenfold reductions in CD4 expression were induced by purified NGcGM3 ganglioside in murine and human T lymphocytes, respectively. The CD4 complete recovery in these cells occurred after 48 h of ganglioside removal, due to neo-synthesis. Restored T cells kept similar sensitivity to ganglioside-induced CD4 down-modulation after a new challenge. In addition, a clear association between NGcGM3 insertion in lymphocyte plasma membranes and the CD4 down-modulation effect was documented. Notably, a possible role of this ganglioside in tumour progression, taking advantage of the X63 myeloma model, was also outlined. The relevance of these findings, characterizing NGcGM3 as a possible tumour immunesurveillance inhibitor and supporting the reason for its neo-expression in certain human cancers, is contributing to this unique heterophilic ganglioside validation as target for cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CMP-NeuAc:

Monophosphoril citidin N-acetyl sialic acid

D-PDMP:

D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol

NAcGM3:

N-acetylated GM3

NGcGM3:

N-glycolylated GM3

NGNA:

N-glycolylneuraminic acid

TFI:

Total fluorescent intensity

References

  1. Bardor M, Nguyen DH, Diaz S, Varki A (2005) Mechanism of uptake and incorporation of the non-human sialic acid N-glycolylneuraminic acid into human cells. J Biol Chem 280:4228–4237

    Article  PubMed  CAS  Google Scholar 

  2. Birklé S, Zeng G, Gao L, Yu RK, Aubry J (2003) Role of tumour-associated gangliosides in cancer progression. Biochimistry 85:455–463

    Article  CAS  Google Scholar 

  3. Black PH (1980) Shedding from normal and cancer-cell surfaces. N Engl J Med 303:1415–1416

    Article  PubMed  CAS  Google Scholar 

  4. Boyum A (1968) Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest Suppl 97:77–89

    PubMed  CAS  Google Scholar 

  5. Caldwell S, Heitger A, Shen W, Liu Y, Taylor B, Ladisch S (2003) Mechanisms of ganglioside inhibition of APC function. J Immunol 171:1676–1683

    PubMed  CAS  Google Scholar 

  6. Carr A, Mullet A, Mazorra Z, Vazquez AM, Alfonso M, Mesa C, Rengifo E, Pérez R, Fernández LE (2000) A mouse IgG1 monoclonal antibody specific for N-glycolyl GM3 ganglioside recognized breast and melanoma tumours. Hybridoma 19:241–247

    Article  PubMed  CAS  Google Scholar 

  7. Carr A, Rodriguez E, Arango Mdel C, Camacho R, Osorio M, Gabri M, Carrillo G, Valdes Z, Bebelagua Y, Perez R, Fernandez LE (2003) Immunotherapy of advanced breast cancer with a heterophilic ganglioside (NeuGcGM3) cancer vaccine. J Clin Oncol 21:1015–1021

    Article  PubMed  CAS  Google Scholar 

  8. Chou HH, Takematsu H, Diaz S, Iber J, Nickerson E, Wright KL, Muchmore EA, Nelson DL, Warren ST, Varki A (1998) A mutation in human CMP-sialic acid hydroxylase occurred after the Homo-Pan divergence. Proc Natl Acad Sci USA 95:11751–11756

    Article  PubMed  CAS  Google Scholar 

  9. Dolo V, Li R, Dillinger M, Flati S, Manel J, Taylor BJ, Pavan A, Ladisch S (2000) Enrichment and localization of ganglioside GD3 and caveolin-1 in shed tumour cell membrane vesicles. Biochim Biophys Acta 1486:265–274

    PubMed  CAS  Google Scholar 

  10. Dumontet C, Rebbaa A, Bienvenu J, Portoukalian J (1994) Inhibition of immune cell proliferation and cytokine production by lipoprotein-bound gangliosides. Cancer Immunol Immunother 38:311–316

    Article  PubMed  CAS  Google Scholar 

  11. Folch PJ, Arsove S, Meath JA (1951) Isolation of brain stradin: a new type of large molecular tissue component. J Biol Chem 191:819–831

    PubMed  CAS  Google Scholar 

  12. Garofalo T, Sorice M, Misasi R, Cinque B, Giammatteo M, Pontieri GM, Cifone MG, Pavan A (1998) A novel mechanism of CD4 down-modulation induced by monosialoganglioside GM3. J Biol Chem 273:35153–35160

    Article  PubMed  CAS  Google Scholar 

  13. Garofalo T, Sorice M, Misasi R, Cinque B, Mattei V, Pontieri GM, Cifone MG, Pavan A (2002) Ganglioside GM3 activates ERKs in human lymphocytic cells. J Lipid Res 43:971–978

    PubMed  CAS  Google Scholar 

  14. Glebov OO, Nichols BJ (2004) Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 6:238–243

    Article  PubMed  CAS  Google Scholar 

  15. Higashi H, Sasabe T, Fukui Y, Maru M, Kato S (1988) Detection of gangliosides as N-glycolylneuraminic acid-specific tumour-associated Hanganutziu-Deicher antigen in human retinoblastoma cells. Jpn J Cancer Res 79:952–956

    PubMed  Google Scholar 

  16. Irani DN, Lin KI, Griffin DE (1996) Brain-derived gangliosides regulate the cytokine production and proliferation of activated T cells. J Immunol 157:4333–4340

    PubMed  CAS  Google Scholar 

  17. Irie A, Koyama S, Kozutsumi Y, Kawasaki T, Suzuki A (1998) The molecular basis for the absence of N-glycolylneuraminic acid in humans. J Biol Chem 273:15866–15871

    Article  PubMed  CAS  Google Scholar 

  18. Kanda N (1999) Gangliosides GD1a and GM3 induce interleukin-10 production by human T cells. Biochem Biophys Res Commun 256:41–44

    Article  PubMed  CAS  Google Scholar 

  19. Kawaguchi T, Nakakuma H, Kagimoto T, Shirono K, Horikawa K, Hidaka M, Iwamori M, Nagai Y, Takatsuki K (1989) Characteristic mode of action of gangliosides in selective modulation of CD4 on human T lymphocytes. Biochem Biophys Res Commun 158(3):1050–1059

    Article  PubMed  CAS  Google Scholar 

  20. Krishnan S, Nambiar MP, Warke VG, Fisher CU, Mitchell J, Delaney N, Tsokos GC (2004) Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. J Immunol 172:7821–7831

    PubMed  CAS  Google Scholar 

  21. Kudo D, Rayman P, Horton C, Cathcart MK, Bukowski RM, Thornton M, Tannenbaum C, Finke JH (2003) Gangliosides expressed by the renal cell carcinoma cell line SK-RC-45 are involved in tumour-induced apoptosis of T cells. Cancer Res 63:1676–1683

    PubMed  CAS  Google Scholar 

  22. Ladisch S, Wu ZL, Feig S, Ulsh L, Schwartz E, Floutsis G, Wiley F, Lenarsky C, Seeger R (1987) Shedding of GD2 ganglioside by human neuroblastoma. Int J Cancer 39:73–76

    Article  PubMed  CAS  Google Scholar 

  23. Marquina G, Waki H, Fernández LE, Kon K, Carr A, Valiente O, Pérez R, Ando S (1996) Gangliosides expressed in human breast cancer. Cancer Res 56:5165–5171

    PubMed  CAS  Google Scholar 

  24. Martin M, Schneider H, Azouz A, Rudd CE (2001) Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J Exp Med 194:1675–1681

    Article  PubMed  CAS  Google Scholar 

  25. McKallip R, Li R, Ladisch S (1999) Tumour gangliosides inhibit the tumour-specific immune response. J Immunol 163:3718–3726

    PubMed  CAS  Google Scholar 

  26. Miyake M, Hashimoto K, Ito M, Ogawa O, Arai E, Itomi S, Kannagi R (1990) Abnormal ocurrence and the differentiation dependent distribution of N-acetyl and N-glycolyl species of ganglioside GM2 in human germ cell tumours. Cancer 65:499–505

    Article  PubMed  CAS  Google Scholar 

  27. Muthing J, Steuer H, Peter-Katalinic J, Marx U, Bethke U, Neumann U, Lehmann J (1994) Expression of gangliosides GM3 (NeuAc) and GM3 (NeuGc) in myelomas and hybridomas of mouse, rat, and human origin. J Biochem (Tokyo) 116:64–73

    CAS  Google Scholar 

  28. Péguet-Navarro J, Sportouch M, Popa I, Berthier O, Schmitt D, Portoukalian J (2003) Gangliosides from human melanoma tumours impair dendritic cell differentiation from monocytes and induce their apoptosis. J Immunol 170:3488–3494

    PubMed  Google Scholar 

  29. Saggioro D, Sorio C, Calderazzo F, Callegaro L, Panozzo M, Berton G, Chieco-Bianchi L (1993) Mechanism of action of the monosialoganglioside GM1 as a modulator of CD4 expression. J Biol Chem 268:1368–1375

    PubMed  CAS  Google Scholar 

  30. Sharom FJ, Chiu AL, Ross TE (1990) Gangliosides and glycophorin inhibit T-lymphocyte activation. Biochem Cell Biol 68:735–744

    Article  PubMed  CAS  Google Scholar 

  31. Shurin GV, Shurin MR, Bykovskaia S, Shogan J, Lotze MT, Barksdale EM Jr (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363–369

    PubMed  CAS  Google Scholar 

  32. Sorice M, Pavan A, Misasi R, Sansolini T, Garofalo T, Lenti L, Pontieri GM, Frati L, Torrisi MR (1995) Monosialoganglioside GM3 induces CD4 internalization in human peripheral blood T lymphocytes. Scand J Immunol 41:148–156

    Article  PubMed  CAS  Google Scholar 

  33. Svennerholm L (1957) Quantitative estimation of sialic acid: a colorimetric resorcinol-hydrocloridric acid method. Biochim Byophys Acta 24:604–611

    Article  CAS  Google Scholar 

  34. Svennerholm L, Fredmand P (1980) A procedure for the quantitative isolation of brain gangliosides. Biochim Byophys Acta 617:97–109

    CAS  Google Scholar 

  35. Takahashi K, Ono K, Hirabayashi Y, Taniguchi M (1988) Escape mechanisms of melanoma from immune system by soluble melanoma antigen. J Immunol 140(9):3244–3248

    PubMed  CAS  Google Scholar 

  36. Taniguchi M, Sakatsume M, Harada Y, Nores GA, Hakomori S (1988) Analysis of melanoma antigen and its involvement in tumour-escape mechanisms. Princess Takamatsu Symp 19:247–254

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Armando Lopez for excellent technical assistance and Dr Blanca Tormo for skilful manuscript edition. This work was supported by the Centre of Molecular Immunology (Havana, Cuba).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel de Leòn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leòn, J.d., Fernández, A., Mesa, C. et al. Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells. Cancer Immunol Immunother 55, 443–450 (2006). https://doi.org/10.1007/s00262-005-0041-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0041-6

Keywords

Navigation