Skip to main content

Advertisement

Log in

The anti-tumor effect of Newcastle disease virus HN protein is influenced by differential subcellular targeting

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Immunotherapy is emerging as a major player in the current standard of care for aggressive cancers such as non-small cell lung cancer (NSCLC). The Newcastle disease virus with its tumor-specific replicative and oncolytic abilities is a promising immunotherapeutic candidate. A DNA vaccine expressing the major immunogenic hemagglutinin-neuraminidase (HN) protein of this virus has shown promising results as an immunotherapeutic agent.

Methods

In the present study, three different DNA vaccine constructs encoding differentially targeted HN proteins (cytoplasmic or Cy-HN, secreted or Sc-HN and membrane-anchored or M-HN) were generated to evaluate their anti-tumor effect in vitro and in vivo.

Results

Although all three DNA constructs elicited an immune response, tumor-bearing mice intratumorally injected with M-HN demonstrated a significantly better anti-tumor effect than those injected with Cy-HN or Sc-HN. We also showed that this anti-tumor effect was mediated by higher lymphocyte proliferative response and CTL activity in mice intratumorally injected with M-HN.

Conclusion

The membrane-anchored form of the HN protein appears to be an ideal candidate to develop as an immunotherapeutic agent for NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Heise C, Hermiston T, Johnson L et al (2000) An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 6:1134–1139

    Article  CAS  PubMed  Google Scholar 

  3. Khuri FR, Nemunaitis J, Ganly I et al (2000) A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 6:879–885

    Article  CAS  PubMed  Google Scholar 

  4. Nakano K, Todo T, Chijiiwa K, Tanaka M (2001) Therapeutic efficacy of G207, a conditionally replicating herpes simplex virus type 1 mutant, for gallbladder carcinoma in immunocompetent hamsters. Mol Ther 3:431–437

    Article  CAS  PubMed  Google Scholar 

  5. Stojdl DF, Lichty B, Knowles S et al (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6:821–825

    Article  CAS  PubMed  Google Scholar 

  6. Yu DC, Chen Y, Seng M, Dilley J, Henderson DR (1999) The addition of adenovirus type 5 region E3 enables calydon virus 787 to eliminate distant prostate tumor xenografts. Cancer Res 59:4200–4203

    CAS  PubMed  Google Scholar 

  7. Herold-Mende C, Karcher J, Dyckhoff G, Schirrmacher V (2005) Antitumor immunization of head and neck squamous cell carcinoma patients with a virus-modified autologous tumor cell vaccine. Adv Otorhinolaryngol 62:173–183

    PubMed  Google Scholar 

  8. Phuangsab A, Lorence RM, Reichard KW, Peeples ME, Walter RJ (2001) Newcastle disease virus therapy of human tumor xenografts: antitumor effects of local or systemic administration. Cancer Lett 172:27–36

    Article  CAS  PubMed  Google Scholar 

  9. Fu F, Liu C-y, Rui G, Yang B-f, Song C, Li X (2008) Anti-tumor effects of NDV D90 against tumor cells of A549 in vitro. Chin J Prevent Vet Med 30:179–182, 189

    Google Scholar 

  10. Donahue JM, Mullen JT, Tanabe KK (2002) Viral oncolysis. Surg Oncol Clin N Am 11:661–680

    Article  PubMed  Google Scholar 

  11. Zeng J, Fournier P, Schirrmacher V (2002) Induction of interferon-alpha and tumor necrosis factor-related apoptosis-inducing ligand in human blood mononuclear cells by hemagglutinin-neuraminidase but not F protein of Newcastle disease virus. Virology 297:19–30

    Article  CAS  PubMed  Google Scholar 

  12. Sinkovics JG, Howe CD (1969) Superinfection of tumors with viruses. Experientia 25:733–734

    Article  CAS  PubMed  Google Scholar 

  13. Bian H, Fournier P, Moormann R, Peeters B, Schirrmacher V (2005) Selective gene transfer in vitro to tumor cells via recombinant Newcastle disease virus. Cancer Gene Ther 12:295–303

    Article  CAS  PubMed  Google Scholar 

  14. Janke M, Peeters B, de Leeuw O et al (2007) Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy. Gene Ther 14:1639–1649

    Article  CAS  PubMed  Google Scholar 

  15. Zamarin D, Martinez-Sobrido L, Kelly K et al (2009) Enhancement of oncolytic properties of recombinant newcastle disease virus through antagonism of cellular innate immune responses. Mol Ther 17:697–706

    Article  CAS  PubMed  Google Scholar 

  16. Tong T, Fan H, Tan Y et al (2006) C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus. Biochem Biophys Res Commun 347:845–851

    Article  CAS  PubMed  Google Scholar 

  17. Grzelinski M, Steinberg F, Martens T, Czubayko F, Lamszus K, Aigner A (2009) Enhanced antitumorigenic effects in glioblastoma on double targeting of pleiotrophin and its receptor ALK. Neoplasia 11:145–156

    CAS  PubMed  Google Scholar 

  18. Wei L, Dai J, Sun S (2000) Construction of Newcastle disease virus hemagglutinin-neuraminidase (HN) gene and its antitumor immune response effects. Acad J Second Military Med Univ 21:6

    Google Scholar 

  19. Hegde S, Niederkorn JY (2000) The role of cytotoxic T lymphocytes in corneal allograft rejection. Invest Ophthalmol Visual Sci 41:3341–3347

    CAS  Google Scholar 

  20. Holt GE, Disis ML (2008) Immune modulation as a therapeutic strategy for non-small-cell lung cancer. Clin Lung Cancer 9(Suppl 1):S13–S19

    Article  CAS  PubMed  Google Scholar 

  21. Cassel WA, Garrett RE (1965) Newcastle disease virus as an antineoplastic agent. Cancer 18:863–868

    Article  CAS  PubMed  Google Scholar 

  22. Schirrmacher V, Haas C, Bonifer R, Ertel C (1997) Virus potentiation of tumor vaccine T-cell stimulatory capacity requires cell surface binding but not infection. Clin Cancer Res 3:1135–1148

    CAS  PubMed  Google Scholar 

  23. Fan H, Xiao S, Tong T et al (2008) Immunogenicity of porcine circovirus type 2 capsid protein targeting to different subcellular compartments. Mol Immunol 45:653–660

    Article  CAS  PubMed  Google Scholar 

  24. Cho JS, Hsu JV, Morrison SL (2009) Localized expression of GITR-L in the tumor microenvironment promotes CD8+ T cell dependent anti-tumor immunity. Cancer Immunol Immunother 58:1057–1069

    Article  CAS  PubMed  Google Scholar 

  25. Klyushnenkova EN, Kouiavskaia DV, Berard CA, Alexander RB (2009) Cutting edge: permissive MHC class II allele changes the pattern of antitumor immune response resulting in failure of tumor rejection. J Immunol 182:1242–1246

    CAS  PubMed  Google Scholar 

  26. Zitvogel L, Mayordomo JI, Tjandrawan T et al (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183:87–97

    Article  CAS  PubMed  Google Scholar 

  27. Qin Z, Richter G, Schuler T, Ibe S, Cao X, Blankenstein T (1998) B cells inhibit induction of T cell-dependent tumor immunity. Nat Med 4:627–630

    Article  CAS  PubMed  Google Scholar 

  28. Ridge JP, Di Rosa F, Matzinger P (1998) A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 393:474–478

    Article  CAS  PubMed  Google Scholar 

  29. Schoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ (1998) T-cell help for cytotoxic T lymphocytes is mediated by CD40–CD40L interactions. Nature 393:480–483

    Article  CAS  PubMed  Google Scholar 

  30. Umeshappa CS, Huang H, Xie Y et al (2009) CD4+ Th-APC with acquired peptide/MHC class I and II complexes stimulate type 1 helper CD4+ and central memory CD8+ T cell responses. J Immunol 182:193–206

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lejing Li.

Additional information

H. Sui, Y. Bai and X. Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sui, H., Bai, Y., Wang, K. et al. The anti-tumor effect of Newcastle disease virus HN protein is influenced by differential subcellular targeting. Cancer Immunol Immunother 59, 989–999 (2010). https://doi.org/10.1007/s00262-010-0821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0821-5

Keywords

Navigation