Skip to main content

Advertisement

Log in

Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Pancreatic ductal adenocarcinoma is a leading cause of cancer mortality with a dismal 2–5 % 5-year survival rate. Monotherapy with Gemcitabine has limited success, highlighting the need for additional therapies that enhance the efficacy of current treatments. We evaluated the combination of Gemcitabine and Rosiglitazone, an FDA-approved drug for the treatment of type II diabetes, in an immunocompetent transplantable mouse model of pancreatic cancer. Tumor progression, survival, and metastases were evaluated in immunocompetent mice with subcutaneous or orthotopic pancreatic tumors treated with Pioglitazone, Rosiglitazone, Gemcitabine, or combinations of these. We characterized the impact of high-dose Rosiglitazone and Gemcitabine therapy on immune suppressive mediators, including MDSC and T regulatory cells, and on modulation of peripheral and intra-tumoral T cell populations. Combinations of Rosiglitazone and Gemcitabine significantly reduced tumor progression and metastases, enhanced apoptosis, and significantly extended overall survival compared to Gemcitabine alone. Rosiglitazone altered tumor-associated immune suppressive mediators by limiting early MDSC accumulation and intra-tumoral T regulatory cells. Combination therapy with Rosiglitazone and Gemcitabine modulated T cell populations by enhancing circulating CD8+ T cells and intra-tumoral CD4+ and CD8+ T cells while limiting T regulatory cells. The results suggest that Rosiglitazone, in combination with Gemcitabine, decreases immune suppressive mechanisms in immunocompetent animals and provides pre-clinical data in support of combining Rosiglitazone and Gemcitabine as a clinical therapy for pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434

    Article  PubMed  CAS  Google Scholar 

  2. Zhao F, Obermann S, von Wasielewski R, Haile L, Manns MP, Korangy F, Greten T (2009) Increase in frequency of myeloid-derived suppressor cells in mice with spontaneous pancreatic carcinoma. Immunology 128:141–149

    Article  PubMed  CAS  Google Scholar 

  3. Mukherjee P, Basu GD, Tinder TL, Subramani DB, Bradley JM, Arefayene M, Skaar T, De petris G (2009) Progression of pancreatic adenocarcinoma is significantly impeded with a combination of vaccine and COX-2 inhibition. J Immunol 182:216–224

    Article  PubMed  CAS  Google Scholar 

  4. Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD (2009) Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 9:900–909

    Article  PubMed  CAS  Google Scholar 

  5. Sarraf P, Mueller E, Jones D, King FJ, DeAngelo DJ, Partridge JB, Holden SA, Chen LB, Fletcher C, Spiegelman BM (1998) Differentiation and reversal of malignant changes in colon cancer through PPARgamma. Nat Med 4:1046–1052

    Article  PubMed  CAS  Google Scholar 

  6. Koeffler HP (2003) Peroxisome proliferator-activated receptor gamma and cancers. Clin Cancer Res 9:1–9

    PubMed  CAS  Google Scholar 

  7. Itami A, Watanabe G, Shimada Y, Hashimoto Y, Kawamura J, Kato M et al (2001) Ligands for peroxisome proliferator-activated receptor gamma inhibit growth of pancreatic cancers both in vitro and in vivo. Int J Cancer 94:370–376

    Article  PubMed  CAS  Google Scholar 

  8. Grommes C, Landreth GE, Sastre M, Beck M, Feinstein DL, Jacobs AH, Schiegel U, Heneka MT (2006) Inhibition of in vivo glioma growth and invasion by peroxisome proliferator-activated receptor gamma agonist treatment. Mol Pharmacol 70:1524–1533

    Article  PubMed  CAS  Google Scholar 

  9. Kassouf W, Chintharlapalli S, Abdelrahim M, Nelkin G, Safe S, Kamat AM (2006) Inhibition of bladder tumor growth by 1,1-bis[3′-indolyl]-1-[p-substitutedphenyl]methanes: a new class of peroxisome proliferator-activated receptor gamma agonists. Cancer Res 66:412–418

    Article  PubMed  CAS  Google Scholar 

  10. Sawai H, Liu J, Reber HA, Hines OJ, Eibl G (2006) Activation of peroxisome proliferator-activated receptor-gamma decreases pancreatic cancer cell invasion through modulation of the plasminogen activator system. Mol Cancer Res 4:159–167

    Article  PubMed  CAS  Google Scholar 

  11. Necela BM, Su W, Thompson EA (2008) Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor gamma and nuclear factor-kappaB in macrophages. Immunology 125:344–358

    Article  PubMed  CAS  Google Scholar 

  12. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA, Flanigan A, Murthy S, Lazar MA, Wu GD (1999) A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 104:383–389

    Article  PubMed  CAS  Google Scholar 

  13. Govindarajan R, Ratnasinghe L, Simmons DL, Siegel ER, Midathada MV, Kim L, Kim PJ, Owens RJ, Lang NP (2007) Thiazolidinediones and the risk of lung, prostate, and colon cancer in patients with diabetes. J Clin Oncol 25:1476–1481

    Article  PubMed  CAS  Google Scholar 

  14. Monami M, Lamanna C, Marchionni N, Mannucci E (2008) Rosiglitazone and risk of cancer: a meta-analysis of randomized clinical trials. Diabetes Care 31:1455–1460

    Article  PubMed  CAS  Google Scholar 

  15. Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N, Spiegelman BM, Singer S (1999) Induction of solid tumor differentiation by the peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA 96:3951–3956

    Article  PubMed  CAS  Google Scholar 

  16. Hisatake JI, Ikezoe T, Carey M, Holden S, Tomoyasu S, Koeffler HP (2000) Down-Regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor gamma in human prostate cancer. Cancer Res 60:5494–5498

    PubMed  CAS  Google Scholar 

  17. Feng YH, Velazquez-Torres G, Gully C, Chen J, Lee MH, Yeung SC (2011) The impact of type 2 diabetes and antidiabetic drugs on cancer cell growth. J Cell Mol Med 15:825–836

    Article  PubMed  CAS  Google Scholar 

  18. Salesiotis AN, Laguinge L, Ling S, Marshall J, Jessup JM (2004) Rosiglitazone works synergistically with Gemcitabine to induce cell death in pancreas cancer cell lines. Clin Pharmacol Ther 75:P61

    Article  Google Scholar 

  19. Zhang YQ, Tang XQ, Sun L, Dong L, Qin Y, Liu HQ, Xia H, Cao JG (2007) Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor gamma. World J Gastroenterol 13:1534–1540

    Article  PubMed  CAS  Google Scholar 

  20. Daynes RA, Jones DC (2002) Emerging roles of PPARs in inflammation and immunity. Nat Rev Immunol 2:748–759

    Article  PubMed  CAS  Google Scholar 

  21. Van Ginderachter JA, Meerschaut S, Liu Y, Brys L, De Groeve K, Hassanzadeh Ghassabeh G, Geert R, De Baetselier P (2006) Peroxisome proliferator-activated receptor gamma [PPARgamma] ligands reverse CTL suppression by alternatively activated [M2] macrophages in cancer. Blood 108:525–535

    Article  PubMed  Google Scholar 

  22. Bailey JM, Mohr AM, Hollingsworth MA (2009) Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene 28:3513–3525

    Article  PubMed  CAS  Google Scholar 

  23. Tsutsumida H, Swanson BJ, Singh PK, Caffrey TC, Kitajima S, Goto M, Yonezawa S, Hollingsworth MA (2006) RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin Cancer Res 12:2976–2987

    Article  PubMed  CAS  Google Scholar 

  24. Behrens ME, Grandgenett PM, Bailey JM, Singh PK, Yi CH, Yu F, Hollingsworth MA (2101) The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene 29:5667–5677

    Google Scholar 

  25. Singh PK, Behrens ME, Eggers JP, Cerny RL, Bailey JM, Shanmugam K, Gendler SJ, Bennett EP, Hollingsworth MA (2008) Phosphorylation of MUC1 by Met modulates interaction with p53 and MMP1 expression. J Biol Chem 283:26985–26995

    Article  PubMed  CAS  Google Scholar 

  26. Kusmartsev SA, Li Y, Chen SH (2000) Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 165:779–785

    PubMed  CAS  Google Scholar 

  27. Galli A, Ceni E, Crabb DW, Mello T, Salzano R, Grappone C, Milani S, Surrenti E, Surrenti C, Casini A (2004) Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPARgamma independent mechanisms. Gut 53:1688–1697

    Article  PubMed  CAS  Google Scholar 

  28. Michalik L, Desvergne B, Wahli W (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer 4:61–70

    Article  PubMed  CAS  Google Scholar 

  29. Bunt SK, Sinha P, Clements VK, Leips J, Ostrand-Rosenberg S (2006) Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression. J Immunol 176:284–290

    PubMed  CAS  Google Scholar 

  30. Farrow B, Sugiyama Y, Chen A, Uffort E, Nealon W, Mark Evers B (2004) Inflammatory mechanisms contributing to pancreatic cancer development. Ann Surg 239:763–769, discussion 9–71

    Google Scholar 

  31. Han S, Roman J (2006) Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol Cancer Ther 5:430–437

    Article  PubMed  CAS  Google Scholar 

  32. Panigrahy D, Singer S, Shen LQ, Butterfield CE, Freedman DA, Chen EJ, Moses MA, Kilroy S, Duensing S, Fletcher C, Fletcher JA, Hlatky L et al (2002) PPARgamma ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis. J Clin Invest 110:923–932

    PubMed  CAS  Google Scholar 

  33. Bradley MC, Hughes CM, Cantwell MM, Napolitano G, Murray LJ (2010) Non-steroidal anti-inflammatory drugs and pancreatic cancer risk: a nested case-control study. Br J Cancer 102:1415–1421

    Article  PubMed  CAS  Google Scholar 

  34. Molina MA, Sitja-Arnau M, Lemoine MG, Frazier ML, Sinicrope FA (1999) Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res 59:4356–4362

    PubMed  CAS  Google Scholar 

  35. Yip-Schneider MT, Wu H, Njoku V, Ralstin M, Holcomb B, Crooks PA, Neelakantan S, Sweeney CJ, Schmidt CM (2008) Effect of celecoxib and the novel anti-cancer agent, dimethylamino-parthenolide, in a developmental model of pancreatic cancer. Pancreas 37:e45–e53

    Article  PubMed  CAS  Google Scholar 

  36. Ferrari V, Valcamonico F, Amoroso V, Simoncini E, Vassalli L, Marpicati P, Pangoni G, Grisanti S, Tiberio GA, Nodari F, Strina C, Marini G (2006) Gemcitabine plus celecoxib [GECO] in advanced pancreatic cancer: a phase II trial. Cancer Chemother Pharmacol 57:185–190

    Article  PubMed  CAS  Google Scholar 

  37. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S (2007) Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67:4507–4513

    Article  PubMed  CAS  Google Scholar 

  38. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  PubMed  CAS  Google Scholar 

  39. Cuzzocrea S, Mazzon E, Di Paola R, Peli A, Bonato A, Britti D, Genovese T, Mula C, Crisafulli C, Caputi AP (2006) The role of the peroxisome proliferator-activated receptor-alpha [PPAR-alpha] in the regulation of acute inflammation. J Leukoc Biol 79:999–1010

    Article  PubMed  CAS  Google Scholar 

  40. Hazra S, Batra RK, Tai HH, Sharma S, Cui X, Dubinett SM (2007) Pioglitazone and rosiglitazone decrease prostaglandin E2 in non-small-cell lung cancer cells by up-regulating 15-hydroxyprostaglandin dehydrogenase. Mol Pharmacol 71:1715–1720

    Article  PubMed  CAS  Google Scholar 

  41. Lee SY, Choi HK, Lee KJ, Jung JY, Hur GY, Jung KH, Kim JH, Shin C, Shim JJ, In KH, Kang KH, Yoo SH (2009) The immune tolerance of cancer is mediated by IDO that is inhibited by COX-2 inhibitors through regulatory T cells. J Immunother 32:22–28

    Article  PubMed  CAS  Google Scholar 

  42. Wang F, Herrington M, Larsson J, Permert J (2003) The relationship between diabetes and pancreatic cancer. Mol Cancer 2:4

    Article  PubMed  Google Scholar 

  43. Hirakata M, Tozawa R, Imura Y, Sugiyama Y (2004) Comparison of the effects of pioglitazone and rosiglitazone on macrophage foam cell formation. Biochem Biophys Res Commun 323:782–788

    Article  PubMed  CAS  Google Scholar 

  44. Vijay SK, Mishra M, Kumar H, Tripathi K (2009) Effect of pioglitazone and rosiglitazone on mediators of endothelial dysfunction, markers of angiogenesis and inflammatory cytokines in type-2 diabetes. Acta Diabetol 46:27–33

    Article  PubMed  CAS  Google Scholar 

  45. Redondo S, Ruiz E, Santos-Gallego CG, Padilla E, Tejerina T (2005) Pioglitazone induces vascular smooth muscle cell apoptosis through a peroxisome proliferator-activated receptor-gamma, transforming growth factor-beta1, and a Smad2-dependent mechanism. Diabetes 54:811–817

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the UNMC Comparative Medicine for their excellent care of our mice, the UNMC Histology Facility, and the UNMC Monoclonal Antibody facility. We also would like to thank Dr. Jane Meza for her help with our statistical analyses. This work was supported by grants from the National Institutes of Health (R03 CA149857, R01CA57362, U01CA111294, P50 CA127297), NCI training grant (CA09476) and student assistantship awards from the University of Nebraska and NCI Cancer Center Grant P30CA36727.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Hollingsworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunt, S.K., Mohr, A.M., Bailey, J.M. et al. Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol Immunother 62, 225–236 (2013). https://doi.org/10.1007/s00262-012-1324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-012-1324-3

Keywords

Navigation