Skip to main content
Log in

Molecular mechanisms of a novel β-thalassaemia mutation due to the duplication of tetranucleotide ‘AGCT’ at the junction IVS-II/exon 3

  • Original Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

We report a new β-thalassaemia allele detected in a young Italian woman, suffering with mild non-haemolytic anaemia (Hb < 10 g/dL) and not showing Hb variant or Heinz bodies. The allele is characterised by duplication of tetranucleotide ‘AG/CT’ (+1344/+1347) including the invariant dinucleotide ‘AG’ of IVS-II acceptor splicing site and the first two nucleotides of codon 105. β-Globin complementary DNA (cDNA) sequencing did not reveal any mutation and qualitative analysis of the reverse transcription PCR reaction showed that only the proximal 3′ splice site present in the duplicated gene is used giving race to an anomalous messenger RNA (mRNA) present in trace (1.5 %) because, most probably, rapidly degraded. In the anomalous mRNA, the insertion causes a frameshift and synthesis of an abnormal truncated β-chain (139 residues), unable to form Hb variant because of the severe conformational changes. The duplication might have arisen from secondary structures generated by quasi-palindromic sequence 5′-CCCA(C)AG/CT(CC)TGGG-3′. Restriction fragment length polymorphism analysis for the β-globin haplotype and familiar segregation analysis indicated that the mutant β-globin gene was associated with the haplotype V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Giardine B, van Baal S, Kaimakis P et al (2007) HbVar database of human hemoglobin variants and Thalassemia mutations: 2007 update. Hum Mutat 28(2):206

    Article  PubMed  Google Scholar 

  2. Jain PK, Dozy AM, Verma IC, Chehab FF (1994) A new frameshift mutation, insertion of ATCT, at codon 48 in the beta-globin gene causes beta-thalassemia in an Indian proband. Hum Mutat 3(4):397–398

    Article  PubMed  CAS  Google Scholar 

  3. Frischknecht H, Kiewitz R, Schmugge M (2005) A 4 base pair TGAT insertion at codon 116 of the beta globin gene causes beta0-thalassemia. Haematologica 90(Suppl):ECR20

    PubMed  Google Scholar 

  4. Flatz G, Wilke K, Syagailo YV et al (1999) Beta-thalassemia in the German population: mediterranean, Asian and novel mutations. Mutations in brief no.228. Online. Hum Mutat 13(3):258

    Article  PubMed  CAS  Google Scholar 

  5. Thein SL (1992) Dominant beta thalassaemia: molecular basis and pathophysiology. Br J Haematol 80(3):273–277

    Article  PubMed  CAS  Google Scholar 

  6. Rojnuckarin P, Settapiboon R, Vanichsetaku P et al (2007) Severe beta(0) thalassemia/hemoglobin E disease caused by de novo 22-base pair duplication in the paternal allele of beta globin gene. Am J Hematol 82(7):663–665

    Article  PubMed  CAS  Google Scholar 

  7. Svasti S, Boonchoy C, Vanichsetakul P, Winichagoon P, Fucharoen S (2008) Molecular mechanism of beta-thalassaemia caused by 22-bp duplication. Ann Hematol 87(8):633–637

    Article  PubMed  CAS  Google Scholar 

  8. Pagano L, Lacerra G, Camardella L et al (1991) Hemoglobin Neapolis, beta 126(H4)Val→Gly: a novel beta-chain variant associated with a mild beta-thalassemia phenotype and displaying anomalous stability features. Blood 78(11):3070–3075

    PubMed  CAS  Google Scholar 

  9. Lacerra G, Musollino G, Scarano C et al (2008) Molecular evidences of single mutational events followed by recurrent crossing-overs in the common delta-globin alleles in the Mediterranean area. Gene 410(1):129–138

    Article  PubMed  CAS  Google Scholar 

  10. Losekoot M, Fodde R, Harteveld CL et al (1990) Denaturing gradient gel electrophoresis and direct sequencing of PCR amplified genomic DNA: a rapid and reliable diagnostic approach to beta thalassaemia. Br J Haematol 76(2):269–274

    Article  PubMed  CAS  Google Scholar 

  11. Bowden DK, Vickers MA, Higgs DR (1992) A PCR-based strategy to detect the common severe determinants of alpha thalassaemia. Br J Haematol 81(1):104–108

    Article  PubMed  CAS  Google Scholar 

  12. Dode C, Krishnamoorthy R, Lamb J, Rochette J (1993) Rapid analysis of -alpha 3.7 thalassaemia and alpha alpha alpha anti 3.7 triplication by enzymatic amplification analysis. Br J Haematol 83(1):105–111

    Article  PubMed  CAS  Google Scholar 

  13. Lacerra G, Musollino G, Di Noce F et al (2007) Genotyping for known Mediterranean alpha-thalassemia point mutations using a multiplex amplification refractory mutation system. Haematologica 92(2):254–255

    Article  PubMed  CAS  Google Scholar 

  14. Lacerra G, Testa R, De Angioletti M et al (2003) Hb Bronte or alpha 93(FG5)Val→Gly: a new unstable variant of the alpha 2-globin gene, associated with a mild alpha(+)-thalassemia phenotype. Hemoglobin 27(3):149–159

    Article  PubMed  CAS  Google Scholar 

  15. De Angioletti M, Lacerra G, Sabato V, Carestia C (2004) Beta + 45G→C: a novel silent beta-thalassaemia mutation, the first in the Kozak sequence. Br J Haematol 124(2):224–231

    Article  PubMed  Google Scholar 

  16. Luukkonen B, Seraphin B (1997) The role of branchpoint-3′ splice site spacing and interaction between intron terminal nucleotides in 3′ splice site selection in Saccharomyces cerevisiae. Embo J 16(4):779–792

    Article  PubMed  CAS  Google Scholar 

  17. Lahr G, Brintrup J, Over S et al (2007) Codon 104(-G), a dominant beta0-thalassemia-like phenotype in a German Caucasian family is associated with mild chronic hemolytic anemia but influenced in severity by co-inherited genetic factors. Haematologica 92(9):1264–1265

    Article  PubMed  Google Scholar 

  18. Bibi A, Messaoud T, Beldjord C, Fattoum S (2006) Detection of two rare beta-thalassemia alleles found in the Tunisian population: codon 47 (+A) and codons 106/107 (+G). Hemoglobin 30(4):437–447

    Article  PubMed  CAS  Google Scholar 

  19. Hopmeier P, Krugluger W, Gu LH et al (1996) A newly discovered frameshift at codons 120–121 (+A) of the beta gene is not associated with a dominant form of beta-thalassemia. Blood 87(12):5393–5394

    PubMed  CAS  Google Scholar 

  20. Hall GW, Thein S (1994) Nonsense codon mutations in the terminal exon of the beta-globin gene are not associated with a reduction in beta-mRNA accumulation: a mechanism for the phenotype of dominant beta-thalassemia. Blood 83(8):2031–2037

    PubMed  CAS  Google Scholar 

  21. Fasken MB, Corbett AH (2009) Mechanisms of nuclear mRNA quality control. RNA Biol 6(3):237–241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the Patient and the family for the collaboration. This study was supported by Ministero Istruzione, Università e Ricerca (MIUR), Legge 488/92, Cluster C02, Project 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Lacerra.

Additional information

This article is dedicated to the memory of Clementina Carestia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Musollino, G., Mastrolonardo, G., Prezioso, R. et al. Molecular mechanisms of a novel β-thalassaemia mutation due to the duplication of tetranucleotide ‘AGCT’ at the junction IVS-II/exon 3. Ann Hematol 91, 1695–1701 (2012). https://doi.org/10.1007/s00277-012-1526-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-012-1526-y

Keywords

Navigation