Skip to main content

Advertisement

Log in

Synergistic interaction between tetrandrine and chemotherapeutic agents and influence of tetrandrine on chemotherapeutic agent-associated genes in human gastric cancer cell lines

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Tetrandrine (Tet), a bis-benzylisoquinoline alkaloid that was isolated from the dried root of Hang-Fang-Chi (Stephania tetrandra S. Moore), is well known as processing a marked antitumor effect in vitro and in vivo. The aim of this study was to assess the interaction between tetrandrine and chemotherapeutic agents widely used in gastric cancer treatment, and to investigate the influence of tetrandrine on chemotherapeutic agent-associated gene expression and apoptosis.

Methods

Synergistic interaction on human gastric cancer BGC-823 and MKN-28 cells was evaluated using the combination index (CI) method. The double staining with both Annexin-V-FITC and PI was employed to distinguish the apoptotic cells from living cells. Expression of chemotherapeutic agent-associated genes, i.e., excision repair cross-complementing 1 (ERCC1), thymidylate synthase (TS), class III β-tubulin (β-tubulin III) and tau, of BGC-823 cells with or without tetrandrine treatment were measured by real-time quantitative PCR.

Results

Tetrandrine had a synergistic effect on the cytotoxicity of chemotherapeutic agents in both two gastric cancer cell lines. The combination of tetrandrine and chemotherapeutic agents could also induce apoptosis in a synergistic manner. Tetrandrine could suppress the mRNA expression of ERCC1, TS, β-tubulin III and tau. Most prominently, ERCC1, TS and β-tubulin III mRNA levels were markedly suppressed at 0.29-, 0.12- and 0.60-fold, respectively, by the presentation of tetrandrine.

Conclusion

Tetrandrine appears a promising candidate for combining with three chemotherapeutic agents. The possible mechanisms might be the synergistic apoptotic effect and the downregulation of chemotherapeutic agent-associated genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sastre J, Garcia-Saenz JA, Diaz-Rubio E (2006) Chemotherapy for gastric cancer. World J Gastroenterol 12:204–213

    PubMed  CAS  Google Scholar 

  2. Ajani JA (2005) Evolving chemotherapy for advanced gastric cancer. Oncologist 10:49–58

    Article  PubMed  CAS  Google Scholar 

  3. Garg AK, Buchholz TA, Aggarwal BB (2005) Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 7:1630–1647

    Article  PubMed  CAS  Google Scholar 

  4. Kuroda H, Nakazawa S, Katagiri K, Shiratori O, Kozuka M (1976) Antitumor effect of bisbenzylisoquinoline alkaloids. Chem Pharm Bull (Tokyo) 24:2413–2420

    CAS  Google Scholar 

  5. Choi HS, Kim HS, Min KR, Kim Y, Lim HK, Chang YK, Chung MW (2000) Anti-inflammatory effects of fangchinoline and tetrandrine. J Ethnopharmacol 69:173–179

    Article  PubMed  CAS  Google Scholar 

  6. Hui SC, Chan TY, Chen YY (1996) Tetrandrine inhibits lipid peroxidation but lacks reactivity towards superoxide anion and hydrogen peroxide. Pharmacol Toxicol 78:200–201

    Article  PubMed  CAS  Google Scholar 

  7. Ma JY, Barger MW, Hubbs AF, Castranova V, Weber SL, Ma JK (1999) Use of tetrandrine to differentiate between mechanisms involved in silica-versus bleomycin-induced fibrosis. J Toxicol Environ Health A 57:247–266

    Article  PubMed  CAS  Google Scholar 

  8. Oh SH, Lee BH (2003) Induction of apoptosis in human hepatoblastoma cells by tetrandrine via caspase-dependent Bid cleavage and cytochrome c release. Biochem Pharmacol 66:725–731

    Article  PubMed  CAS  Google Scholar 

  9. Choi SU, Park SH, Kim KH, Choi EJ, Kim S, Park WK, Zhang YH, Kim HS, Jung NP, Lee CO (1998) The bisbenzylisoquinoline alkaloids, tetrandine and fangchinoline, enhance the cytotoxicity of multidrug resistance-related drugs via modulation of P-glycoprotein. Anticancer Drugs 9:255–61

    Article  PubMed  CAS  Google Scholar 

  10. Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  PubMed  CAS  Google Scholar 

  11. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  13. Barret JM, Etievant C, Hill BT (2000) In vitro synergistic effects of vinflunine, a novel fluorinated vinca alkaloid, in combination with other anticancer drugs. Cancer Chemother Pharmacol 45:471–476

    Article  PubMed  CAS  Google Scholar 

  14. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184:39–51

    Article  PubMed  CAS  Google Scholar 

  15. Ye ZG, Van Dyke K, Castranova V (1989) The potentiating action of tetrandrine in combination with chloroquine or qinghaosu against chloroquine-sensitive and resistant falciparum malaria. Biochem Biophys Res Commun 165:758–765

    Article  PubMed  CAS  Google Scholar 

  16. Sun AX, Ye ZG, Li CY, Xue BY, Li LF, Cao XF, Yang Q, Dai BQ (1999) Synergistic anticancer effects of tetrandrine combined with doxorubicin or vincristine in vitro. Zhongguo Yao Li Xue Bao 20:69–73

    PubMed  CAS  Google Scholar 

  17. Kano Y, Akutsu M, Tsunoda S, Mori K, Suzuki K, Adachi KI (1998) In vitro schedule-dependent interaction between paclitaxel and SN-38 (the active metabolite of irinotecan) in human carcinoma cell lines. Cancer Chemother Pharmacol 42:91–98

    Article  PubMed  CAS  Google Scholar 

  18. Perez EA, Buckwalter CA (1998) Sequence-dependent cytotoxicity of etoposide and paclitaxel in human breast and lung cancer cell lines. Cancer Chemother Pharmacol 41:448–452

    Article  PubMed  CAS  Google Scholar 

  19. Kaye SB (1998) New antimetabolites in cancer chemotherapy and their clinical impact. Br J Cancer 78:1–7

    PubMed  CAS  Google Scholar 

  20. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res 51:6304–6311

    PubMed  CAS  Google Scholar 

  21. Iwadate Y, Tagawa M, Fujimoto S, Hirose M, Namba H, Sueyoshi K, Sakiyama S, Yamaura A (1998) Mutation of the p53 gene in human astrocytic tumours correlates with increased resistance to DNA-damaging agents but not to anti-microtubule anti-cancer agents. Br J Cancer 77:547–551

    PubMed  CAS  Google Scholar 

  22. Schimming R, Mason KA, Hunter N, Weil M, Kishi K, Milas L (1999) Lack of correlation between mitotic arrest or apoptosis and antitumor effect of docetaxel. Cancer Chemother Pharmacol 43:165–172

    Article  PubMed  CAS  Google Scholar 

  23. Meng LH, Zhang H, Hayward L, Takemura H, Shao RG, Pommier Y (2004) Tetrandrine induces early G1 arrest in human colon carcinoma cells by down-regulating the activity and inducing the degradation of G1-S-specific cyclin-dependent kinases and by inducing p53 and p21Cip1. Cancer Res 64:9086–9092

    Article  PubMed  CAS  Google Scholar 

  24. Salonga D, Danenberg KD, Johnson M, Metzger R, Groshen S, Tsao-Wei DD, Lenz HJ, Leichman CG, Leichman L, Diasio RB, Danenberg PV (2000) Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 6:1322–1327

    PubMed  CAS  Google Scholar 

  25. Aschele C, Lonardi S, Monfardini S (2002) Thymidylate Synthase expression as a predictor of clinical response to fluoropyrimidine-based chemotherapy in advanced colorectal cancer. Cancer Treat Rev 28:27–47

    Article  PubMed  CAS  Google Scholar 

  26. Grem JL, Danenberg KD, Behan K, Parr A, Young L, Danenberg PV, Nguyen D, Drake J, Monks A, Allegra CJ (2001) Thymidine kinase, thymidylate synthase, and dihydropyrimidine dehydrogenase profiles of cell lines of the National Cancer Institute’s Anticancer Drug Screen. Clin Cancer Res 7:999–1009

    PubMed  CAS  Google Scholar 

  27. Nita ME, Tominaga O, Nagawa H, Tsuruo T, Muto T (1998) Dihydropyrimidine dehydrogenase but not thymidylate synthase expression is associated with resistance to 5-fluorouracil in colorectal cancer. Hepatogastroenterology 45:2117–2122

    PubMed  CAS  Google Scholar 

  28. Popat S, Matakidou A, Houlston RS (2004) Thymidylate synthase expression and prognosis in colorectal cancer: a systematic review and meta-analysis. J Clin Oncol 22:529–536

    Article  PubMed  CAS  Google Scholar 

  29. Fehrenbach A, Nusse N, Nayudu PL (1998) Patterns of growth, oestradiol and progesterone released by in vitro cultured mouse ovarian follicles indicate consecutive selective events during follicle development. J Reprod Fertil 113:287–297

    Article  PubMed  CAS  Google Scholar 

  30. Selvakumaran M, Pisarcik DA, Bao R, Yeung AT, Hamilton TC (2003) Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res 63:1311–1316

    PubMed  CAS  Google Scholar 

  31. Rosell R, Cecere F, Santarpia M, Reguart N, Taron M (2006) Predicting the outcome of chemotherapy for lung cancer. Curr Opin Pharmacol 6:323–331

    Article  PubMed  CAS  Google Scholar 

  32. Metzger R, Leichman CG, Danenberg KD, Danenberg PV, Lenz HJ, Hayashi K, Groshen S, Salonga D, Cohen H, Laine L, Crookes P, Silberman H, Baranda J, Konda B, Leichman L (1998) ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 16:309–316

    PubMed  CAS  Google Scholar 

  33. Sarries C, Haura EB, Roig B, Taron M, Abad A, Scagliotti G, Rosell R (2002) Pharmacogenomic strategies for developing customized chemotherapy in non-small cell lung cancer. Pharmacogenomics 3:763–780

    Article  PubMed  CAS  Google Scholar 

  34. Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, Gallo D, Martinelli E, Ranelletti FO, Ferrandina G, Scambia G (2005) Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11:298–305

    PubMed  CAS  Google Scholar 

  35. Rouzier R, Rajan R, Wagner P, Hess KR, Gold DL, Stec J, Ayers M, Ross JS, Zhang P, Buchholz TA, Kuerer H, Green M, Arun B, Hortobagyi GN, Symmans WF, Pusztai L (2005) Microtubule-associated protein tau: a marker of paclitaxel sensitivity in breast cancer. Proc Natl Acad Sci USA 102:8315–8320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work is supported in part by National Nature Science Foundation of China (30471701, 30670958) and Medical Technology Development Foundation of Nanjing (ZKX05015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baorui Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, J., Liu, B., Wang, L. et al. Synergistic interaction between tetrandrine and chemotherapeutic agents and influence of tetrandrine on chemotherapeutic agent-associated genes in human gastric cancer cell lines. Cancer Chemother Pharmacol 60, 703–711 (2007). https://doi.org/10.1007/s00280-007-0416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-007-0416-9

Keywords

Navigation