Skip to main content

Advertisement

Log in

In Vitro α-Glucosidase Inhibition and Antioxidative Potential of an Endophyte Species (Streptomyces sp. Loyola UGC) Isolated from Datura stramonium L

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Endophytic actinomycetes isolated from Datura stramonium L. was evaluated for its effects against in vitro α-glucosidase inhibition, antioxidant, and free radical scavenging activities. Based on microbial cultural characteristic and 16S rRNA sequencing, it was identified as Streptomyces sp. loyola UGC. The methanolic extract of endophytic actinomycetes (MeEA) shows remarkable inhibition of α-glucosidase (IC50 730.21 ± 1.33 μg/ml), scavenging activity on 2,2-diphenyl-picrylhydrazyl (DPPH) (IC50 435.31 ± 1.79 μg/ml), hydroxyl radical (IC50 350.21 ± 1.02 μg/ml), nitric oxide scavenging (IC50 800.12 ± 1.05 μg/ml), superoxide anion radical (IC50 220.31 ± 1.47 μg/ml), as well as a high and dose-dependent reducing power. The MeEA also showed a strong suppressive effect on rat liver lipid peroxidation. Antioxidants of β-carotene linoleate model system revels significantly lower than BHA. The total phenolic content of the extract was 176 mg of catechol equivalents/gram extract. Perusal of this study indicates MeEA can be used as natural resource of α-glucosidase inhibitor and antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berkov S, Zayed R, Doncheva T (2006) Alkaloids patterns in some varieties of Datura stramonium. Fitoterapia 77:179–182

    Article  PubMed  CAS  Google Scholar 

  2. Brand-Williams W, Cuvelier M, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technology 28:25–30

    Article  CAS  Google Scholar 

  3. Chang SS, Wu ML, Deng JF, Lee CC, Chin TF, Liao SJ (1999) Poisoning by Datura leaves used as edible wild vegetables. Vet Hum Toxicol 41:242–245

    PubMed  CAS  Google Scholar 

  4. Dahlqvist A (1964) Method for assay of intestinal disaccharidases. Anal Biochem 7:18–25

    Article  PubMed  CAS  Google Scholar 

  5. De Foe V, Senatore F (1993) Medicinal plants and phytotherapy in the Amal Fitan Cost, Salerno province Campania, Southern Italy. J Ethnopharmacol 39:39–51

    Article  Google Scholar 

  6. De Melo EB, Gomes ADS, Carvalho I (2006) α- and β-Glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62(44):10277–10302. doi:10.1016/j.tet.08.055

    Article  Google Scholar 

  7. Diker D, Markovitz D, Rothman M, Sendovski U (2007) Coma as a presenting sign of Datura stramonium seed tea poisoning. Eur J Intern Med 18(4):336–338

    Article  PubMed  CAS  Google Scholar 

  8. Elizabeth K, Rao MNA (1990) Oxygen scavenging activity of curcumin. Int J Pharm 58:237–240

    Article  Google Scholar 

  9. Garratt DC (1964) The Quantitative Analysis of Drugs, vol 3. Chapman and Hall, Tokyo, pp 456–458

    Google Scholar 

  10. Goda T, Yamada K, Hosoya N, Moriuchi Y (1981) Effect of alpha glucosidase inhibitor BAY g 5421 on rat intestinal disaccharidases. EiyoToShokuryo (in Japanese) 34:139–143

    Google Scholar 

  11. Hanato T, Kagawa H, Yasuhara T, Okuda T (1988) Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem Pharm Bull 36:2090–2097

    Article  Google Scholar 

  12. Janero DR (1990) Malondialdehyde and thiobarbituric acid reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biol Med 9:515–540

    Article  CAS  Google Scholar 

  13. Jayaprakasha GK, Singh RP, Sakariah KK (2001) Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models invitro. Food Chem 73:285–290

    Article  CAS  Google Scholar 

  14. Johannes H, Gabriele B, Barbara S (2006) Isolation procedures for endophytic microorganisms. Springer, Berlin, p 299

    Google Scholar 

  15. Kumar G, Murugesan AG (2008) Hypolipidaemic activity of Helicteres isora L. bark extracts in streptozotocin induced diabetic rats. J Ethnopharmacol 116:161–166

    Article  PubMed  CAS  Google Scholar 

  16. Liu F, Ooi VEC, Chang ST (1997) Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci 60(10):763–771

    Article  PubMed  CAS  Google Scholar 

  17. Mahmud T (2003) The C7N aminocyclitol family of natural products. Natural Product Reports 20(1):137–166. doi:10.1039/b205561a

    Article  PubMed  CAS  Google Scholar 

  18. Marcocci L, Packer L, Droy-Lefai MT, Sekaki A, Gardes-Albert M (1994) Antioxidant action of Ginkgo biloba extracts EGb 761. Methods Enzymol 234:462–475

    Article  PubMed  CAS  Google Scholar 

  19. Matsui T, Ueda T, Oki T, Sugita K, Terahara N (2001) α-Glucosidase inhibitory action of natural acylated anthocyanins. Journal Agricultural Food Chemistry 49:1948–1951

    Article  CAS  Google Scholar 

  20. Meir S, Kanner J, Akiri B, Hadas SP (1995) Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural Food Chemistry 43:1813–1817

    Article  CAS  Google Scholar 

  21. Miller HE (1971) A simplified method for the evaluation of antioxidant. J Am Oil Chem Soc 18:439–452

    Google Scholar 

  22. Nitin KU, Yogendra Kumar MS, Asheesh G (2010) Antioxidant, cytoprotective and antibacterial effects of Sea buckthorn (Hippophae rhamnoides L.) leaves. Food Chem Toxicol 48:3443–3448

    Article  Google Scholar 

  23. Parejo I, Viladomat F, Bastida J (2002) Comparison between the radical scavenging activity and antioxidant activity of six distilled and non distilled Mediterranean herbs and aromatic plants. Journal of Agricultural Food Chemistry 50:6882–6890

    Article  CAS  Google Scholar 

  24. Ramesh Babu K, Maddirala Dilip R, Vinay Kumar K, Shaik Sameena F, Tiruvenkata Kumar EG, Swapna S, Ramesh B, Rao CA (2010) Antihyperglycemic and antihyperlipidemic activities of methanol:water (4:1) fraction isolated from aqueous extract of Syzygium alternifolium seeds in streptozotocin induced diabetic rats. Food Chem Toxicol 48:1078–1084

    Article  Google Scholar 

  25. Rose WM, Creighton MO, Stewart DHPJ, Sanwal M, Trevithick GR (1972) In vivo effects of vitamin E on cataractogenesis in diabetic rats. Can J Ophthalmol 17:61–66

    Google Scholar 

  26. Shukla S, Mehta A, Bajpai VK, Shukla S (2009) In vitro antioxidant activity and total phenolic content of ethanolic leaf extract of Stevia rebaudiana Bert. Food Chem Toxicol 47:2338–2343

    Article  PubMed  CAS  Google Scholar 

  27. Slinkard K, Singleton VL (1977) Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture 8:4955

    Google Scholar 

  28. Spring MA (1989) Ethnopharmacologic analysis of medicinal plants used by Laotian Hmong refugees in Minnesota. J Ethnopharmacol 26:65–91

    Article  PubMed  CAS  Google Scholar 

  29. Theodore C, Bania MS, Chu Jasan, Bailes Dallas, O’Neill Melanie (2004) Jimson Weed Extract as a Protective Agent in Severe Organophosphate Toxicity. Acad Emerg Med 11(4):335–338

    Google Scholar 

  30. Waksman SA, Henrici AT (1943) The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341

    PubMed  CAS  Google Scholar 

  31. Yan XC (1992) Isolation and identification of actinomycete. Science, Beijing, pp 45–68

    Google Scholar 

  32. Yen GC, Duh PD (1993) Antioxidative properties of methanolic extracts from Peanut Hulls. J Am Oil Chem Soc 70:383–386

    Article  CAS  Google Scholar 

  33. Yen GC, Hsieh CL (1998) Antioxidant activity of extracts from Du-zhong (Eucommia urmoides) towards various peroxidation models in vitro. Journal of Agricultural and Food Chemistry 46:3952–3957

    Article  CAS  Google Scholar 

  34. Yoshikawa M, Shimada H, Norihisa N, Li Y, Toguchida I, Yamahara J, Matsuda H (1998) Antidiabetic principles of natural medicines. II. Aldose reductase and a-glucosidase inhibitors from Brazilian natural medicine, the leaves of Myrcia multiflora DC. (Myrtaceae): structures of Myrciacitrins I and II and Myrciaphenones A and B. Chem Pharm Bull 46:113–119

    Article  PubMed  CAS  Google Scholar 

  35. Zagari A (1992) Medicinal plants, vol 3, 5th edn. Tehran University Publication, Tehran, p 889

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the University Grant Commission, Government of India—UGC Major Research Project—under F-39-266/2010 (SR) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Agastian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nimal Christhudas, I.V.S., Praveen Kumar, P. & Agastian, P. In Vitro α-Glucosidase Inhibition and Antioxidative Potential of an Endophyte Species (Streptomyces sp. Loyola UGC) Isolated from Datura stramonium L. Curr Microbiol 67, 69–76 (2013). https://doi.org/10.1007/s00284-013-0329-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-013-0329-2

Keywords

Navigation