Skip to main content
Log in

Genetics of antigenic variation in Plasmodium falciparum

  • Review
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Malaria caused by the protozoan parasite Plasmodium falciparum is characterized by long-term, persistent infections that can last for many months. The ability of this parasite to avoid clearance by the human immune system is dependent on its capacity to continuously alter the surface exposed antigenic proteins that that are vulnerable to antibody recognition and attack, a process called antigenic variation. Significant work in recent years has contributed to our understanding of the mechanisms underlying this process, including the genes encoding the antigenic proteins and the DNA sequence elements that control their expression. In addition, the epigenetic “marks” that are associated with activation and silencing of individual genes have been extensively characterized. These studies have led to a model that includes multiple layers of regulation that ultimately lead to the tight coordination of expression of the genes responsible for antigenic variation by malaria parasites. Here we review some more recent data that adds additional complexity to our understanding of these regulatory layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Amulic B, Salanti A, Lavstsen T, Nielsen MA, Deitsch KW (2009) An upstream open reading frame controls translation of var2csa, a gene implicated in placental malaria. PLoS Pathog 5:e1000256

    Article  PubMed  CAS  Google Scholar 

  • Andersen AA, Panning B (2003) Epigenetic gene regulation by noncoding RNAs. Curr Opin Cell Biol 15:281–289

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Iyer LM, Wellems TE, Miller LH (2003) Plasmodium biology: genomic gleanings. Cell 115:771–785

    Article  PubMed  CAS  Google Scholar 

  • Baruch DI (1999) Adhesive receptors on malaria-parasitized red cells. Baillieres Best Pract Res Clin Haematol 12:747–761

    Article  PubMed  CAS  Google Scholar 

  • Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC, Feldman M, Taraschi TF, Howard RJ (1995) Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82:77–87

    Article  PubMed  CAS  Google Scholar 

  • Blythe JE, Yam XY, Kuss C, Bozdech Z, Holder AA, Marsh K, Langhorne J, Preiser PR (2008) Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect Immun 76:3329–3336

    Article  PubMed  CAS  Google Scholar 

  • Calderwood MS, Gannoun-Zaki L, Wellems TE, Deitsch KW (2003) Plasmodium falciparum var genes are regulated by two regions with separate promoters, one upstream of the coding region and a second within the intron. J Biol Chem 278:34125–34132

    Article  PubMed  CAS  Google Scholar 

  • Chang SC, Tucker T, Thorogood NP, Brown CJ (2006) Mechanisms of X-chromosome inactivation. Front Biosci 11:852–866

    Article  PubMed  CAS  Google Scholar 

  • Chen Q, Fernandez V, Sundstrom A, Schlichtherle M, Datta S, Hagblom P, Wahlgren M (1998) Developmental selection of var gene expression in Plasmodium falciparum. Nature 394:392–395

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Cloonan N, Fischer K, Thompson J, Waine G, Lanzer M, Saul A (1998) stevor and rif are Plasmodium falciparum multicopy gene families which potentially encode variant antigens. Mol Biochem Parasitol 97:161–176

    Article  PubMed  CAS  Google Scholar 

  • Chookajorn T, Dzikowski R, Frank M, Li F, Jiwani AZ, Hartl DL, Deitsch KW (2007) Epigenetic memory at malaria virulence genes. Proc Natl Acad Sci USA 104:899–902

    Article  PubMed  CAS  Google Scholar 

  • Coleman BI, Duraisingh MT (2008) Transcriptional control and gene silencing in Plasmodium falciparum. Cell Microbiol 10:1935–1946

    Article  PubMed  CAS  Google Scholar 

  • Cooke BM, Mohandas N, Coppel RL (2001) The malaria-infected red blood cell: structural and functional changes. Adv Parasitol 50:1–86

    Article  PubMed  CAS  Google Scholar 

  • Deitsch KW, Moxon ER, Wellems TE (1997) Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol Mol Biol Rev 61:281–293

    PubMed  CAS  Google Scholar 

  • Deitsch KW, Calderwood MS, Wellems TE (2001) Malaria. Cooperative silencing elements in var genes. Nature 412:875–876

    Article  PubMed  CAS  Google Scholar 

  • Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT, Thompson JK, Freitas-Junior LH, Scherf A, Crabb BS, Cowman AF (2005) Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. Cell 121:13–24

    Article  PubMed  CAS  Google Scholar 

  • Dzikowski R, Deitsch KW (2008) Active transcription is required for maintenance of epigenetic memory in the malaria parasite Plasmodium falciparum. J Mol Biol 382:288–297

    Article  PubMed  CAS  Google Scholar 

  • Dzikowski R, Frank M, Deitsch K (2006) Mutually exclusive expression of virulence genes by malaria parasites is regulated independently of antigen production. PLoS Pathog 2:e22

    Article  PubMed  CAS  Google Scholar 

  • Dzikowski R, Li F, Amulic B, Eisberg A, Frank M, Patel S, Wellems TE, Deitsch KW (2007) Mechanisms underlying mutually exclusive expression of virulence genes by malaria parasites. EMBO Rep 8:959–965

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg JC, Shilatifard A (2006) Leaving a mark: the many footprints of the elongating RNA polymerase II. Curr Opin Genet Dev 16:184–190

    Article  PubMed  CAS  Google Scholar 

  • Epp C, Li F, Howitt CA, Chookajorn T, Deitsch KW (2008a) Chromatin associated sense and antisense noncoding RNAs are transcribed from the var gene family of virulence genes of the malaria parasite Plasmodium falciparum. RNA 15:116–127

    Article  PubMed  CAS  Google Scholar 

  • Epp C, Raskolnikov D, Deitsch KW (2008b) A regulatable transgene expression system for cultured Plasmodium falciparum parasites. Malar J 7:86

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Dzikowski R, Constantini D, Amulic B, Burdougo E, Deitsch K (2006) Strict pairing of var promoters and introns is required for var gene silencing in the malaria parasite Plasmodium falciparum. J Biol Chem 281:9942–9952

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Dzikowski R, Amulic B, Deitsch K (2007) Variable switching rates of malaria virulence genes are associated with chromosomal position. Mol Microbiol 64:1486–1498

    Article  PubMed  CAS  Google Scholar 

  • Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK, Rojas-Meza AP, Mancio-Silva L, Leal-Silvestre RJ, Gontijo AM, Shorte S, Scherf A (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  PubMed  CAS  Google Scholar 

  • Glenister FK, Fernandez KM, Kats LM, Hanssen E, Mohandas N, Coppel RL, Cooke BM (2008) Functional alteration of red blood cells by a mega-dalton protein of Plasmodium falciparum. Blood 112:3939–3948

    Article  CAS  Google Scholar 

  • Hampsey M, Reinberg D (2003) Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113:429–432

    Article  PubMed  CAS  Google Scholar 

  • Hodder AN, Maier AG, Rug M, Brown M, Hommel M, Pantic I, Puig-de-Morales-Marinkovic M, Smith B, Triglia T, Beeson J, Cowman AF (2008) Analysis of structure and function of the giant protein Pf332 in Plasmodium falciparum. Mol Microbiol 71:48–65

    Article  PubMed  CAS  Google Scholar 

  • Horrocks P, Pinches R, Christodoulou Z, Kyes SA, Newbold CI (2004) Variable var transition rates underlie antigenic variation in malaria. Proc Natl Acad Sci USA 101:11129–11134

    Article  PubMed  CAS  Google Scholar 

  • Iyer JK, Amaladoss A, Genesan S, Preiser PR (2007) Variable expression of the 235 kDa rhoptry protein of Plasmodium yoelii mediate host cell adaptation and immune evasion. Mol Microbiol 65:333–346

    Article  PubMed  CAS  Google Scholar 

  • Kraemer SM, Smith JD (2003) Evidence for the importance of genetic structuring to the structural and functional specialization of the Plasmodium falciparum var gene family. Mol Microbiol 50:1527–1538

    Article  PubMed  CAS  Google Scholar 

  • Kyes SA, Rowe JA, Kriek N, Newbold CI (1999) Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc Natl Acad Sci USA 96:9333–9338

    Article  PubMed  CAS  Google Scholar 

  • Kyes S, Horrocks P, Newbold C (2001) Antigenic variation at the infected red cell surface in malaria. Annu Rev Microbiol 55:673–707

    Article  PubMed  CAS  Google Scholar 

  • Kyes SA, Christodoulou Z, Raza A, Horrocks P, Pinches R, Rowe JA, Newbold CI (2003) A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern. Mol Microbiol 48:1339–1348

    Article  PubMed  CAS  Google Scholar 

  • Kyes SA, Kraemer SM, Smith JD (2007) Antigenic variation in Plasmodium falciparum: gene organization and regulation of the var multigene family. Eukaryot Cell 6:1511–1520

    Article  PubMed  CAS  Google Scholar 

  • Lavazec C, Sanyal S, Templeton TJ (2007) Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol Microbiol 64:1621–1634

    Article  PubMed  CAS  Google Scholar 

  • Lavstsen T, Salanti A, Jensen ATR, Arnot DE, Theander TG (2003) Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. Malar J 2:27

    Article  PubMed  Google Scholar 

  • Li F, Sonbuchner L, Kyes SA, Epp C, Deitsch KW (2008) Nuclear non-coding RNAs are transcribed from the centromeres of Plasmodium falciparum and are associated with centromeric chromatin. J Biol Chem 283:5692–5698

    Article  PubMed  CAS  Google Scholar 

  • Llinas M, Deitsch KW, Voss TS (2008) Plasmodium gene regulation: far more to factor in. Trends Parasitol 24:551–556

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Rubio JJ, Gontijo AM, Nunes MC, Issar N, Hernandez RR, Scherf A (2007a) 5′ flanking region of var genes nucleate histone modification patterns linked to phenotypic inheritance of virulence traits in malaria parasites. Mol Microbiol 66:1296–1305

    PubMed  CAS  Google Scholar 

  • Lopez-Rubio JJ, Riviere L, Scherf A (2007b) Shared epigenetic mechanisms control virulence factors in protozoan parasites. Curr Opin Microbiol 10:560–568

    Article  PubMed  CAS  Google Scholar 

  • Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL (1997) roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–457

    Article  PubMed  CAS  Google Scholar 

  • Meller VH, Gordadze PR, Park Y, Chu X, Stuckenholz C, Kelley RL, Kuroda MI (2000) Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr Biol 10:136–143

    Article  PubMed  CAS  Google Scholar 

  • Miller LH, Good MF, Milon G (1994) Malaria pathogenesis. Science 264:1878–1883

    Article  PubMed  CAS  Google Scholar 

  • Mills JP, Diez-Silva M, Quinn DJ, Dao M, Lang MJ, Tan KS, Lim CT, Milon G, David PH, Mercereau-Puijalon O, Bonnefoy S, Suresh S (2007) Effect of plasmodial RESA protein on deformability of human red blood cells harboring Plasmodium falciparum. Proc Natl Acad Sci USA 104:9213–9217

    Article  PubMed  CAS  Google Scholar 

  • Mok BW, Ribacke U, Rasti N, Kironde F, Chen Q, Nilsson P, Wahlgren M (2008) Default pathway of var2csa switching and translational repression in Plasmodium falciparum. PLoS ONE 3:e1982

    Article  PubMed  CAS  Google Scholar 

  • Mourier T, Carret C, Kyes S, Christodoulou Z, Gardner PP, Jeffares DC, Pinches R, Barrell B, Berriman M, Griffiths-Jones S, Ivens A, Newbold C, Pain A (2008) Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum. Genome Res 18:281–292

    Article  PubMed  CAS  Google Scholar 

  • Navarro M, Gull K (2001) A pol I transcriptional body associated with VSG mono-allelic expression in Trypanosoma brucei. Nature 414:759–763

    Article  PubMed  CAS  Google Scholar 

  • Ralph SA, Scheidig-Benatar C, Scherf A (2005) Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. Proc Natl Acad Sci USA 102:5414–5419

    Article  PubMed  CAS  Google Scholar 

  • Salanti A, Staalsoe T, Lavstsen T, Jensen ATR, Sowa MPK, Arnot DE, Hviid L, Theander TG (2003) Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol Microbiol 49:179–191

    Article  PubMed  CAS  Google Scholar 

  • Salanti A, Dahlback M, Turner L, Nielsen MA, Barfod L, Magistrado P, Jensen AT, Lavstsen T, Ofori MF, Marsh K, Hviid L, Theander TG (2004) Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J Exp Med 200:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Sam-Yellowe TY, Florens L, Johnson JR, Wang T, Drazba JA, Le Roch KG, Zhou Y, Batalov S, Carucci DJ, Winzeler EA, Yates JRIII (2004) A Plasmodium gene family encoding Maurer’s cleft membrane proteins: structural properties and expression profiling. Genome Res 14:1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C, Pouvelle B, Gysin J, Lanzer M (1998) Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J 17:5418–5426

    Article  PubMed  CAS  Google Scholar 

  • Scherf A, Lopez-Rubio JJ, Riviere L (2008) Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol 62:445–470

    Article  PubMed  CAS  Google Scholar 

  • Sharp S, Lavstsen T, Fivelman QL, Saeed M, McRobert L, Templeton TJ, Jensen ATR, Baker DA, Theander TG, Sutherland CJ (2006) Programmed transcription of the var gene family, but not of stevor, in Plasmodium falciparum gametocytes. Eukaryot Cell 5:1206–1214

    Article  PubMed  CAS  Google Scholar 

  • Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE, Peterson DS, Pinches R, Newbold CI, Miller LH (1995) Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82:101–110

    Article  PubMed  CAS  Google Scholar 

  • Staines HM, Alkhalil A, Allen RJ, De Jonge HR, Derbyshire E, Egee S, Ginsburg H, Hill DA, Huber SM, Kirk K, Lang F, Lisk G, Oteng E, Pillai AD, Rayavara K, Rouhani S, Saliba KJ, Shen C, Solomon T, Thomas SL, Verloo P, Desai SA (2007) Electrophysiological studies of malaria parasite-infected erythrocytes: current status. Int J Parasitol 37:475–482

    Article  PubMed  CAS  Google Scholar 

  • Su X, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JV, Peterson DS, Ravetch JV, Wellems TE (1995) A large and diverse gene family (var) encodes 200–350 kD proteins implicated in the antigenic variation and cytoadherence of Plasmodium falciparum-infected erythrocytes. Cell 82:89–100

    Article  PubMed  CAS  Google Scholar 

  • Trimnell AR, Kraemer SM, Mukherjee S, Phippard DJ, Janes JH, Flamoe E, Su XZ, Awadalla P, Smith JD (2006) Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol Biochem Parasitol 148:169–180

    Article  PubMed  CAS  Google Scholar 

  • Viebig NK, Gamain B, Scheidig C, Lepolard C, Przyborski J, Lanzer M, Gysin J, Scherf A (2005) A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A. EMBO Rep 6:775–781

    Article  PubMed  CAS  Google Scholar 

  • Voss TS, Thompson JK, Waterkeyn J, Felger I, Weiss N, Cowman AF, Beck HP (2000) Genomic distribution and functional characterisation of two distinct and conserved Plasmodium falciparum var gene 5′ flanking sequences. Mol Biochem Parasitol 107:103–115

    Article  PubMed  CAS  Google Scholar 

  • Voss TS, Kaestli M, Vogel D, Bopp S, Beck HP (2003) Identification of nuclear proteins that interact differentially with Plasmodium falciparum var gene promoters. Mol Microbiol 48:1593–1607

    Article  PubMed  CAS  Google Scholar 

  • Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK, Beeson JG, Reeder JC, Crabb BS, Cowman AF (2006) A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439:1004–1008

    PubMed  CAS  Google Scholar 

  • Winter G, Chen QJ, Flick K, Kremsner P, Fernandez V, Wahlgren M (2003) The 3D7var5.2 (var(COMMON)) type var gene family is commonly expressed in non-placental Plasmodium falciparum malaria. Mol Biochem Parasitol 127:179–191

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Ira Pasternak for his contributions to the graphic design of Fig. 1. The Department of Microbiology and Immunology at Weill Medical College of Cornell University acknowledges the support of the William Randolph Hearst Foundation. KWD is a Stavros S. Niarchos Scholar and is supported by National Institutes of Health grant AI 52390. RD is a Golda Meir Scholar and supported by the Marie Curie International Reintegration Grant (IRG) [203675] and the German Israeli Foundation [2163-1725.11/2006]. KWD and RD are supported by grant No. 2007350 from the United States-Israel Binational Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk W. Deitsch.

Additional information

Communicated by N. Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzikowski, R., Deitsch, K.W. Genetics of antigenic variation in Plasmodium falciparum . Curr Genet 55, 103–110 (2009). https://doi.org/10.1007/s00294-009-0233-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-009-0233-2

Keywords

Navigation