Skip to main content

Advertisement

Log in

Expression of the rabies virus nucleoprotein in plants at high-levels and evaluation of immune responses in mice

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Transgenic plants have been employed successfully as a low-cost system for the production of therapeutically valuable proteins including antibodies, antigens and hormones. Here, we report expression of a full-length nucleoprotein gene of rabies virus in transgenic tomato plants. The nucleoprotein was also transiently expressed in Nicotiana benthamiana plants by agroinfiltration. In both cases, the nucleoprotein was expressed at high levels, 1–5% of total soluble protein in tomato and 45% in N. benthamiana. Previously, only epitopes of the nucleoprotein had been expressed in plants. The presence and expression of the transgene was verified by PCR, Southern, northern and western blots. Mice were immunized both intraperitoneally (i.p.) and orally with tomato protein extracts containing the N protein induced the production of antibodies. The antibody titer of mice immunized i.p., was at least four times higher than that of mice immunized orally. These results were reflected in the challenge experiments where i.p.-immunized mice were partially protected against a peripheral virus challenge whereas orally immunized mice were not. This protection was comparable to that obtained in previous experiments employing different expression systems. Work is in progress to express both G and N proteins in transgenic plants and evaluate protection in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aldrich J, Cullis CA (1993) RAPD analysis in flax: optimization of yield and reproducibility using KlenTaq1 DNA polymerase, Chelex 100 and gel purification of genomic DNA. Plant Mol Biol Rep 11:128–141

    CAS  Google Scholar 

  • Ashraf S, Singh PK, Yadav DK, Shahnawaz M, Mishra S, Sawant SV, Tuli R (2005) High level expression of surface glycoprotein of rabies virus in tobacco leaves and its immunoprotective activity in mice. J Biotechnol 119:1–14

    Article  PubMed  CAS  Google Scholar 

  • Astoul E, Lafage M, Lafon M (1996) Rabies superantigen as a Vbeta T-dependent adjuvant. J Exp Med 183:1623–1631

    Article  PubMed  CAS  Google Scholar 

  • Bendahmane M, Koo M, Karrer E, Beachy RN (1999) Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus-host interactions. J Mol Biol 290:9–20

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Christou P (1996) Transformation technology. Trends Plants Sci 1:423–431

    Article  Google Scholar 

  • Cox JH (1982) The structural proteins of rabies virus. Comp Immunol Microbiol Infect Dis 5:21–25

    Article  PubMed  CAS  Google Scholar 

  • da Cruz FW, McBride AJ, Conceicao FR, Dale JW, McFadden J, Dellagostin OA (2002) Expression of the B-cell and T-cell epitopes of the rabies virus nucleoprotein in Mycobacterium bovis BCG and induction of an humoral response in mice. Vaccine 20:731–736

    Article  Google Scholar 

  • Dietzschold B, Tollis M, Rupprecht CE, Celis E, Koprowski H (1987a) Antigenic variation in rabies and rabies-related viruses: cross-protection independent of glycoprotein-mediated virus-neutralizing antibody. J Infect Dis 156:815–822

    PubMed  CAS  Google Scholar 

  • Dietzschold B, Wang HH, Rupprecht CE, Celis E. Tollis M, Ertl H, Heber-Katz E, Koprowski H (1987b) Induction of protective immunity against rabies by immunization with rabies virus ribonucleoprotein. Proc Natl Acad Sci USA 84:9165–9169

    Article  PubMed  CAS  Google Scholar 

  • Dietzschold B, Rupprecht CE, Tollis M, Lafon M, Mattei J, Wiktor TJ, Koprowski H (1988) Antigenic diversity of the glycoprotein and nucleocapsid proteins of rabies and rabies-related viruses: implications for epidemiology and control of rabies. Rev Infect Dis 10(Suppl 4):S785–S798

    PubMed  CAS  Google Scholar 

  • Drings A, Jallet C, Chambert B, Tordo N, Perrin P (1999) Is there an advantage to including the nucleoprotein in a rabies glycoprotein subunit vaccine? Vaccine 17:1549–1557

    Article  PubMed  CAS  Google Scholar 

  • Dus Santos MJ, Wigdorovitz A (2005) Transgenic plants for the production of veterinary vaccines. Immunol Cell Biol 83:229–238

    Article  PubMed  CAS  Google Scholar 

  • Ertl HC, Dietzschold B, Gore M, Otvos L Jr, Larson JK, Wunner WH, Koprowski H (1989) Induction of rabies virus-specific T-helper cells by synthetic peptides that carry dominant T-helper cell epitopes of the viral ribonucleoprotein. J Virol 63:2885–2892

    PubMed  CAS  Google Scholar 

  • Fekadu M, Sumner JW, Shaddock JH, Sanderlin DW, Baer GM (1992) Sickness and recovery of dogs challenged with a street rabies virus after vaccination with a vaccinia virus recombinant expressing rabies virus N protein. J Virol 66:2601–2604

    PubMed  CAS  Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    Article  PubMed  CAS  Google Scholar 

  • Flamand A, Wiktor TJ, Koprowski H (1980) Use of hybridoma monoclonal antibodies in the detection of antigenic differences between rabies and rabies-related virus proteins II. The glycoprotein. J Gen Virol 48:105–109

    PubMed  CAS  Google Scholar 

  • Fu ZF, Dietzschold B, Schumacher CL, Wunner WH, Ertl HC, Koprowski H (1991) Rabies virus nucleoprotein expressed in and purified from insect cells is efficacious as a vaccine. Proc Natl Acad Sci USA 88:2001–2005

    Article  PubMed  CAS  Google Scholar 

  • Gil F, Brun A, Wigdorovitz A, Catala R, Martinez-Torrecuadrada JL, Casal I, Salinas J, Borca MV, Escribano JM (2001) High-yield expression of a viral peptide vaccine in transgenic plants. FEBS Lett 488:13–17

    Article  PubMed  CAS  Google Scholar 

  • Gils M, Kandzia R, Marillonnet S, Klimyuk V, Gleba Y (2005) High-yield production of authentic human growth hormone using a plant virus-based expression system. Plant Biotech J 3:613–620

    Article  CAS  Google Scholar 

  • Gutierrez-Ortega A, Sandoval-Montes C, de Olivera-Flores TJ, Santos-Argumedo L, Gomez-Lim MA (2005) Expression of functional interleukin-12 from mouse in transgenic tomato plants. Transgenic Res 14:877–885

    Article  PubMed  CAS  Google Scholar 

  • Hooper DC, Pierard I, Modelska A, Otvos L Jr, Fu ZF, Koprowski H, Dietzschold B (1994) Rabies ribonucleocapsid as an oral immunogen and immunological enhancer. Proc Natl Acad Sci USA 91:10908–10912

    Article  PubMed  CAS  Google Scholar 

  • Howard JA (2004) Commercialization of plant-based vaccines from research and development to manufacturing. Anim Health Res Rev 5:243–245

    Article  PubMed  Google Scholar 

  • Huang Z, Santi L, LePore K, Kilbourne J, Arntzen CJ, Mason HS (2006) Rapid, high-level production of hepatitis B core antigen in plant leaf and its immunogenicity in mice. Vaccine 24:2506–2513

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi R, Bailey-Serres J (2002) Regulation of translational initiation in plants. Curr Op Plant Biol 5:460–465

    Article  CAS  Google Scholar 

  • Ku MS, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuoka M (1999) High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol 17:76–80

    Article  PubMed  CAS  Google Scholar 

  • Lafon M, Wiktor TJ, Macfarlan RI (1983) Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. J Gen Virol 64:843–851

    Article  PubMed  Google Scholar 

  • Lafon M, Scott-Algara D, Marche PN, Cazenave PA, Jouvin-Marche E (1994) Neonatal deletion and selective expansion of mouse T cells by exposure to rabies virus nucleocapsid superantigen. J Exp Med 180:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Lodmell DL, Sumner JW, Esposito JJ, Bellini WJ, Ewalt LC (1991) Raccoon poxvirus recombinants expressing the rabies virus nucleoprotein protect mice against lethal rabies virus infection. J Virol 65:3400–3405

    PubMed  CAS  Google Scholar 

  • Lodmell DL, Esposito JJ, Ewalt LC (1993) Rabies virus antinucleoprotein antibody protects against rabies virus challenge in vivo and inhibits rabies virus replication in vitro. J Virol 67:6080–6086

    PubMed  CAS  Google Scholar 

  • Lodmell DL, Smith JS, Esposito JJ, Ewalt LC (1995) Cross-protection of mice against a global spectrum of rabies virus variants. J Virol 69:4957–4962

    PubMed  CAS  Google Scholar 

  • Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101:6852–6857

    Article  PubMed  CAS  Google Scholar 

  • Marquet-Blouin E, Bouche FB, Steinmetz A, Muller CP (2003) Neutralizing immunogenicity of transgenic carrot (Daucus carota L.)-derived measles virus hemagglutinin. Plant Mol Biol 51:459–469

    Article  PubMed  CAS  Google Scholar 

  • McGarvey PB, Hammond J, Dienelt MM, Hooper DC, Fu ZF, Dietzschold B, Koprowski H, Michaels FH (1995) Expression of the rabies virus glycoprotein in transgenic tomatoes. Biotechnol 13:1484–1487

    Article  CAS  Google Scholar 

  • Modelska A, Dietzschold B, Sleysh N, Fu ZF, Steplewski K, Hooper DC, Koprowski H, Yusibov V (1998) Immunization against rabies with plant-derived antigen. Proc Natl Acad Sci USA 95:2481–2485

    Article  PubMed  CAS  Google Scholar 

  • Morimoto K, McGettigan JP, Foley HD, Hooper DC, Dietzschold B, Schnell MJ (2001) Genetic engineering of live rabies vaccines. Vaccine 19:3543–3551

    Article  PubMed  CAS  Google Scholar 

  • Nadin-Davis SA, Loza-Rubio E (2006) The molecular epidemiology of rabies associated with chiropteran hosts in Mexico. Virus Res 117:215–226

    Article  PubMed  CAS  Google Scholar 

  • Nel LH, Niezgoda M, Hanlon CA, Morril PA, Yager PA, Rupprecht CE (2003) A comparison of DNA vaccines for the rabies-related virus, Mokola. Vaccine 21:2598–2606

    Article  PubMed  CAS  Google Scholar 

  • Rupprecht CE, Hanlon CA, Hemachudha T (2002) Rabies re-examined. Lancet Infect Dis 2:327–343

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor, New York

    Google Scholar 

  • Smith JS (1995) Rabies virus. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH (eds) Manual of clinical microbiology. American Society for Microbiology, Washington, DC pp 997–1003

    Google Scholar 

  • Streatfield SJ, Lane JR, Brooks CA, Barker DK, Poage ML, Mayor JM, Lamphear BJ, Drees CF, Jilka JM, Hood EE, Howard JA (2003) Corn as a production system for human and animal vaccines. Vaccine 21:812–815

    Article  PubMed  CAS  Google Scholar 

  • Summer JW, Fekadu M, Shaddock JH, Esposito JJ, Bellini WJ (1991) Protection of mice with vaccinia virus recombinants that express the rabies nucleoprotein. Virology 183:703–710

    Article  Google Scholar 

  • Yusibov V, Modelska A, Steplewski K, Agadjanyan M, Weiner D, Hooper DC, Koprowski H (1997) Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc Natl Acad Sci USA 94:5784–5788

    Article  PubMed  CAS  Google Scholar 

  • Yusibov V, Hooper DC, Spitsin SV, Fleysh N, Kean RB, Mikheeva T, Deka D, Karasev A, Cox S, Randall J, Koprowski H (2002) Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine 20:3155–3164

    Article  PubMed  CAS  Google Scholar 

  • Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Angel Gómez Lim.

Additional information

Communicated by G.D. May.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perea Arango, I., Loza Rubio, E., Rojas Anaya, E. et al. Expression of the rabies virus nucleoprotein in plants at high-levels and evaluation of immune responses in mice. Plant Cell Rep 27, 677–685 (2008). https://doi.org/10.1007/s00299-007-0324-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-007-0324-9

Keywords

Navigation