Skip to main content
Log in

Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification

  • Gastrointestinal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Purposes

To evaluate the feasibility of simultaneous quantification of liver iron concentration (LIC) and fat fraction (FF) using water-fat separation and quantitative susceptibility mapping (QSM).

Methods

Forty-five patients suspected of liver iron overload (LIO) were included. A volumetric interpolated breath-hold examination sequence for QSM and FF, a fat-saturated gradient echo sequence for R2*, a spin echo sequence for LIC measurements and MRS analyses for FF (FF-MRS) were performed. Magnetic susceptibility and FF were calculated using a water-fat separation method (FF-MRI). Correlation and receiver operating characteristic analyses were performed.

Results

Magnetic susceptibility showed strong correlation with LIC (rs=0.918). The optimal susceptibility cut-off values were 0.34, 0.63, 1.29 and 2.23 ppm corresponding to LIC thresholds of 1.8, 3.2, 7.0 and 15.0 mg/g dry weight. The area under the curve (AUC) were 0.948, 0.970, 1 and 1, respectively. No difference in AUC was found between susceptibility and R2* at all LIC thresholds. Correlation was found between FF-MRI and FF-MRS (R2=0.910).

Conclusions

QSM has a high diagnostic performance for LIC quantification, similar to that of R2*. FF-MRI provides simultaneous fat quantification. Findings suggest QSM in combination with water-fat separation has potential value for evaluating LIO, especially in cases with coexisting steatosis.

Key Points

• Magnetic susceptibility showed strong correlation with LIC (r s =0.918).

• QSM showed high diagnostic performance for LIC, similar to that of R 2 * .

• Simultaneously estimated FF-MRI showed strong correlation with MR-Spectroscopy-based FF (R 2 =0.910).

• QSM combining water-fat separation has quantitative value for LIO with coexisted steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

FF-MRI:

FF calculated with a water-fat separation method

FF-MRS:

MR Spectroscopy based FF

FF:

Fat fraction

FOV:

Field of view

GRE:

Gradient echo

ICC:

Intraclass correlation coefficients

LIC:

Liver iron concentration

LIO:

Liver iron overload

mg/g dw:

mg/g dry weight

QSM:

Quantitative susceptibility mapping

ROC:

Receiver operating characteristic

ROI:

Region of interest

VIBE:

Volumetric interpolated breath-hold examination

References

  1. Brittenham GM, Badman DG, National Institute of D, Digestive, Kidney Diseases W (2003) Noninvasive measurement of iron: report of an NIDDK workshop. Blood 101:15–19

    Article  PubMed  CAS  Google Scholar 

  2. Vermylen C (2008) What is new in iron overload? Eur J Pediatr 167:377–381

    Article  PubMed  Google Scholar 

  3. Chou ST, Fasano RM (2016) Management of Patients with Sickle Cell Disease Using Transfusion Therapy: Guidelines and Complications. Hematol Oncol Clin North Am 30:591–608

    Article  PubMed  Google Scholar 

  4. Wood JC (2015) Estimating tissue iron burden: current status and future prospects. Br J Haematol 170:15–28

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wood JC, Enriquez C, Ghugre N et al (2005) MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood 106:1460–1465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Hankins JS, McCarville MB, Loeffler RB et al (2009) R2* magnetic resonance imaging of the liver in patients with iron overload. Blood 113:4853–4855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kuhn JP, Hernando D, Munoz del Rio A et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265:133–142

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moirand R, Mortaji AM, Loreal O, Paillard F, Brissot P, Deugnier Y (1997) A new syndrome of liver iron overload with normal transferrin saturation. Lancet 349:95–97

    Article  PubMed  CAS  Google Scholar 

  9. George DK, Goldwurm S, MacDonald GA et al (1998) Increased hepatic iron concentration in nonalcoholic steatohepatitis is associated with increased fibrosis. Gastroenterology 114:311–318

    Article  PubMed  CAS  Google Scholar 

  10. Wood MJ, Powell LW, Dixon JL, Ramm GA (2012) Clinical cofactors and hepatic fibrosis in hereditary hemochromatosis: the role of diabetes mellitus. Hepatology 56:904–911

    Article  PubMed  CAS  Google Scholar 

  11. Kuhn JP, Meffert P, Heske C et al (2017) Prevalence of Fatty Liver Disease and Hepatic Iron Overload in a Northeastern German Population by Using Quantitative MR Imaging. Radiology 284:706–716

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reeder SB, Sirlin CB (2010) Quantification of liver fat with magnetic resonance imaging. Magn Reson Imaging Clin N Am 18:337–357 ix

    Article  PubMed  PubMed Central  Google Scholar 

  13. Henninger B, Zoller H, Rauch S et al (2015) R2* relaxometry for the quantification of hepatic iron overload: biopsy-based calibration and comparison with the literature. Rofo 187:472–479

    Article  PubMed  CAS  Google Scholar 

  14. Sanches-Rocha L, Serpa B, Figueiredo E, Hamerschlak N, Baroni R (2013) Comparison between multi-echo T2* with and without fat saturation pulse for quantification of liver iron overload. Magn Reson Imaging 31:1704–1708

    Article  PubMed  CAS  Google Scholar 

  15. Krafft AJ, Loeffler RB, Song R et al (2016) Does fat suppression via chemically selective saturation affect R2*-MRI for transfusional iron overload assessment? A clinical evaluation at 1.5T and 3T. Magn Reson Med 76:591–601

    Article  PubMed  CAS  Google Scholar 

  16. Meloni A, Tyszka JM, Pepe A, Wood JC (2015) Effect of inversion recovery fat suppression on hepatic R2* quantitation in transfusional siderosis. AJR Am J Roentgenol 204:625–629

    Article  PubMed  PubMed Central  Google Scholar 

  17. Powell EE, Ali A, Clouston AD et al (2005) Steatosis is a cofactor in liver injury in hemochromatosis. Gastroenterology 129:1937–1943

    Article  PubMed  CAS  Google Scholar 

  18. Galimberti S, Trombini P, Bernasconi DP et al (2015) Simultaneous liver iron and fat measures by magnetic resonance imaging in patients with hyperferritinemia. Scand J Gastroenterol 50:429–438

    Article  PubMed  CAS  Google Scholar 

  19. Franca M, Alberich-Bayarri A, Marti-Bonmati L et al (2017) Accurate simultaneous quantification of liver steatosis and iron overload in diffuse liver diseases with MRI. Abdom Radiol (NY) 42:1434–1443

    Article  Google Scholar 

  20. Henninger B, Zoller H, Kannengiesser S, Zhong X, Jaschke W, Kremser C (2017) 3D Multiecho Dixon for the Evaluation of Hepatic Iron and Fat in a Clinical Setting. J Magn Reson Imaging 46:793–800

    Article  PubMed  Google Scholar 

  21. Taylor BA, Loeffler RB, Song R, McCarville MB, Hankins JS, Hillenbrand CM (2012) Simultaneous field and R2 mapping to quantify liver iron content using autoregressive moving average modeling. J Magn Reson Imaging 35:1125–1132

    Article  PubMed  Google Scholar 

  22. Liu C, Wei H, Gong NJ, Cronin M, Dibb R, Decker K (2015) Quantitative susceptibility mapping: contrast mechanisms and clinical applications. Tomography 1:3–17

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wei H, Xie L, Dibb R et al (2016) Imaging whole-brain cytoarchitecture of mouse with MRI-based quantitative susceptibility mapping. Neuroimage 137:107–115

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sharma SD, Fischer R, Schoennagel BP et al (2017) MRI-based quantitative susceptibility mapping (QSM) and R2* mapping of liver iron overload: Comparison with SQUID-based biomagnetic liver susceptometry. Magn Reson Med 78:264–270

    Article  PubMed  CAS  Google Scholar 

  25. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB (2008) Multiecho water-fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60:1122–1134

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pineda N, Sharma P, Xu Q, Hu X, Vos M, Martin DR (2009) Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy--a rapid and accurate technique. Radiology 252:568–576

    Article  PubMed  Google Scholar 

  27. Hamilton G, Yokoo T, Bydder M et al (2011) In vivo characterization of the liver fat 1H MR spectrum. NMR Biomed 24:784–790

    Article  PubMed  Google Scholar 

  28. Wu B, Li W, Guidon A, Liu C (2012) Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 67:137–147

    Article  PubMed  Google Scholar 

  29. Wei H, Dibb R, Zhou Y et al (2015) Streaking artifact reduction for quantitative susceptibility mapping of sources with large dynamic range. NMR Biomed 28:1294–1303

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wei H, Zhang Y, Gibbs E, Chen NK, Wang N, Liu C (2016) Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging. NMR Biomed. https://doi.org/10.1002/nbm.3501

  31. Feng Y, He T, Gatehouse PD et al (2013) Improved MRI R2 * relaxometry of iron-loaded liver with noise correction. Magn Reson Med 70:1765–1774

    Article  PubMed  Google Scholar 

  32. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  PubMed  CAS  Google Scholar 

  33. Sharma SD, Hernando D, Horng DE, Reeder SB (2015) Quantitative susceptibility mapping in the abdomen as an imaging biomarker of hepatic iron overload. Magn Reson Med 74:673–683

    Article  PubMed  CAS  Google Scholar 

  34. Longo R, Ricci C, Masutti F et al (1993) Fatty infiltration of the liver. Quantification by 1H localized magnetic resonance spectroscopy and comparison with computed tomography. Invest Radiol 28:297–302

    Article  PubMed  CAS  Google Scholar 

  35. Wood JC (2014) Guidelines for quantifying iron overload. Hematology Am Soc Hematol Educ Program 2014:210–215

    PubMed  Google Scholar 

  36. Olivieri NF, Brittenham GM (1997) Iron-chelating therapy and the treatment of thalassemia. Blood 89:739–761

    PubMed  CAS  Google Scholar 

  37. Harrison SA, Bacon BR (2005) Relation of hemochromatosis with hepatocellular carcinoma: epidemiology, natural history, pathophysiology, screening, treatment, and prevention. Med Clin North Am 89:391–409

    Article  PubMed  CAS  Google Scholar 

  38. Kang BK, Yu ES, Lee SS et al (2012) Hepatic fat quantification: a prospective comparison of magnetic resonance spectroscopy and analysis methods for chemical-shift gradient echo magnetic resonance imaging with histologic assessment as the reference standard. Invest Radiol 47:368–375

    Article  PubMed  CAS  Google Scholar 

  39. Hong CW, Mamidipalli A, Hooker JC et al (2017) MRI proton density fat fraction is robust across the biologically plausible range of triglyceride spectra in adults with nonalcoholic steatohepatitis. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25845

  40. Satkunasingham J, Besa C, Bane O et al (2015) Liver fat quantification: Comparison of dual-echo and triple-echo chemical shift MRI to MR spectroscopy. Eur J Radiol 84:1452–1458

    Article  PubMed  Google Scholar 

  41. Zhong X, Nickel MD, Kannengiesser SA, Dale BM, Kiefer B, Bashir MR (2014) Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn Reson Med 72:1353–1365

    Article  PubMed  Google Scholar 

  42. Yokoo T, Browning JD (2014) Fat and iron quantification in the liver: past, present, and future. Top Magn Reson Imaging 23:73–94

    Article  PubMed  Google Scholar 

  43. St Pierre TG, El-Beshlawy A, Elalfy M et al (2014) Multicenter validation of spin-density projection-assisted R2-MRI for the noninvasive measurement of liver iron concentration. Magn Reson Med 71:2215–2223

    Article  PubMed  CAS  Google Scholar 

  44. Xie L, Sparks MA, Li W et al (2013) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR Biomed 26:1853–1863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Krafft AJ, Loeffler RB, Song R et al (2017) Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 Tesla. Magn Reson Med. https://doi.org/10.1002/mrm.26592

  46. Luo XF, Xie XQ, Cheng S et al (2015) Dual-energy CT for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content? Radiology 277:95–103

    Article  PubMed  Google Scholar 

  47. Wang Y, Liu T (2015) Quantitative susceptibility mapping (QSM): Decoding MRI data for a tissue magnetic biomarker. Magn Reson Med 73:82–101

    Article  PubMed  CAS  Google Scholar 

  48. Henninger B, Kremser C, Rauch S et al (2012) Evaluation of MR imaging with T1 and T2* mapping for the determination of hepatic iron overload. Eur Radiol 22:2478–2486

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stephan Kannengiesser for helpful discussion.

Funding

This study has received funding by National Natural Science Foundation of China (81671649), National Institute of Mental Health (R01MH096979, R24MH106096), National Institute of Neurological Disorders and Stroke (R01NS079653), and National Heart, Lung, and Blood Institute (R21HL122759).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuhua Yan.

Ethics declarations

Guarantor

The scientific guarantor of this publication is Fuhua Yan.

Conflict of interest

The authors of this manuscript declare relationships with the following companies: Caixia Fu and Xu Yan are employees of Siemens Healthcare.

Statistics and biometry

One of the authors has significant statistical expertise.

Informed consent

Written informed consent was obtained from all subjects in this study.

Ethical approval

Institutional Review Board approval was obtained.

Methodology

• prospective

• diagnostic or prognostic study

• performed at one institution

Electronic supplementary material

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Wei, H., He, N. et al. Quantitative susceptibility mapping in combination with water-fat separation for simultaneous liver iron and fat fraction quantification. Eur Radiol 28, 3494–3504 (2018). https://doi.org/10.1007/s00330-017-5263-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-017-5263-4

Keywords

Navigation