Skip to main content
Log in

Genome screen for bone mineral density phenotypes in Fisher 344 and Lewis rat strains

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

In humans, peak bone mineral density (BMD) is the primary determinant of osteoporotic fracture risk among older individuals, with high peak BMD levels providing protection against osteoporosis in the almost certain event of bone loss later in life. A genome screen to identify quantitative trait loci (QTLs) contributing to areal BMD (aBMD) and volumetric BMD (vBMD) measurements at the lumbar spine and femoral neck was completed in 595 female F2 rats produced from reciprocal crosses of inbred Fischer 344 and Lewis rats. Significant evidence of linkage was detected to rat Chromosomes 1, 2, 8, and 10, with LOD scores above 8.0. The region on rat Chromosome 8 is syntenic to human Chromosome 15, where linkage to spine and femur BMD has been previously reported and confirmed in a sample of premenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anonymous (2000) Osteoporosis Prevention, Diagnosis, and Therapy. NIH Consensus Statement 17(2), 1–36

    Google Scholar 

  • Beamer WG, Shultz KL, Churchill GA, Frankel WN, Baylink DJ, et al. (1999) Quantitative trait loci for bone density in C57BL/6J and CAST/EiJ inbred mice. Mamm Genome 10, 1043–1049

    Article  PubMed  Google Scholar 

  • Devoto M, Shimoya K, Caminis J, Ott J, Tenenhouse A, et al. (1998) First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 6, 151–157

    Article  PubMed  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142, 285–294

    PubMed  Google Scholar 

  • Grant SF, Reid DM, Blake G, Herd R, Fogelman I, et al. (1996) Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I alpha 1 gene. Nat Genet 14, 203–205

    Article  PubMed  Google Scholar 

  • Karasik D, Myers RH, Cupples LA, Hannan MT, Gagnon DR, et al. (2002) Genome screen for quantitative trait loci contributing to normal variation in bone mineral density: the Framingham Study. J Bone Miner Res 17, 1718–1727

    PubMed  Google Scholar 

  • Klein RF, Mitchell SR, Phillips TJ, Belknap JK, Orwoll ES (1998) Quantitative trait loci affecting peak bone mineral density in mice. J Bone Miner Res 13, 1648–1656

    PubMed  Google Scholar 

  • Koller DL, Econs MJ, Morin PA, Christian JC, Hui SL, et al. (2000) Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 85, 3116–3120

    Article  PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, et al. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181

    Article  PubMed  Google Scholar 

  • Marshall D, Johnell O, Wedel H (1996) Meta–analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312, 1254–1259

    PubMed  Google Scholar 

  • Mesches MH, Gemma C, Veng LM, Allgeier C, Young DA, et al. (2004) Sulindac improves memory and increases NMDA receptor subunits in aged Fischer 344 rats. Neurobiol Aging 25: 315–324

    Article  PubMed  Google Scholar 

  • Mullins LJ, Mullins JJ (2004) Insights from the rat genome sequence. Genome Biol 5, 221

    Article  PubMed  Google Scholar 

  • Peacock M, Hustmyer FG, Hui S, Johnston CC, Christian J (1995) Vitamin D receptor genotype and bone mineral density: evidence conflicts on link. BMJ 311, 874–875

    Google Scholar 

  • Peacock M, Turner CH, Econs MJ, Foroud T (2002) Genetics of osteoporosis. Endocr Rev 23, 303–326

    Article  PubMed  Google Scholar 

  • Peacock M, Koller DL, Hui S, Johnston CC, Foroud T, et al. (2004) Peak bone mineral density at the hip is linked to chromosomes 14q and 15q. Osteoporos Int 15, 489–496

    Article  PubMed  Google Scholar 

  • Sano M, Inoue S, Hosoi T, Ouchi Y, Emi M, et al. (1995) Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem Biophys Res Commun 217, 378–383

    Article  PubMed  Google Scholar 

  • Sato M, Kim J, Short LL, Slemenda CW, Bryant HU (1995) Longitudinal and cross–sectional analysis of reloxifene effects on tibiae from ovariectomized aged rats. J Pharmacol Exp Ther 272, 1252–1259

    PubMed  Google Scholar 

  • Turner CH, Roeder RK, Wieczorek A, Foroud T, Liu G, et al. (2001) Variability in skeletal mass, structure, and biomechanical properties among inbred strains of rats. J Bone Miner Res 16, 1532–1539

    PubMed  Google Scholar 

  • Turner CH, Sun Q, Schriefer J, Pitner N, Price R, et al. (2003) Congenic mice reveal sex–specific genetic regulation of femoral structure and strength. Calcif Tissue Int 73, 297–303

    Article  PubMed  Google Scholar 

  • Wilson SG, Reed PW, Bansal A, Chiano M, Lindersson M, et al. (2003) Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 72, 144–155

    Article  PubMed  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genet Res 74, 279–289

    Article  PubMed  Google Scholar 

  • Zhang Y, Chong E, Herman B (2002) Age–associated increases in the activity of multiple caspases in Fisher 344 rat organs. Exp Gerontol 37, 777–789

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the U.S. National Institutes of Health through the following grants: R01AR046530 (CHT), P01AG018397 (CHT, DLK, TF, MJE), RO1 AR47866, and RO1 AR42228 (MJE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Koller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koller, D.L., Alam, I., Sun, Q. et al. Genome screen for bone mineral density phenotypes in Fisher 344 and Lewis rat strains. Mamm Genome 16, 578–586 (2005). https://doi.org/10.1007/s00335-004-2459-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-004-2459-0

Keywords

Navigation