Skip to main content
Log in

Structural impact on piezoelectricity in PVDF and P(VDF-TrFE) thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

PVDF and its mostly used copolymer P(VDF-TrFE) are known to possess piezoelectric properties which strongly vary with processing conditions. As the final target of processing ultimately is the structure of the polymer, establishing a more detailed link between structure and properties would ease both the understanding and the practical usage of films piezoelectric activity. In spite of a number of thorough studies exploiting the nature of piezoelectricity in PVDF, available data does not generally exhibit reliable level of consistency and, in some cases, elements of contradiction are observed. Making no claim to be exhaustive in this vast area, we present a survey and discuss on a number of results both available and obtained by ourselves in an effort to assist to better interpretation and further progress in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E. Fukada, History and recent progress in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1277–1290 (2000)

    Article  Google Scholar 

  2. H. Kawaii, The piezoelectricity of poly(vinylidene fluoride). Jap. J. Appl. Phys. 8, 975–976 (1969)

    Article  ADS  Google Scholar 

  3. L.F. Brown, Ferroelectric polymers: current and future ultrasound applications. 1992 IEEE Ultrasonics Symposium, vol. 1, pp. 539–550

  4. V. Strashilov, J. Burov, M. Nikolov, Dynamic shear piezoelectricity of poly(vinylidene fluoride) thin films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(6), 1181–1188 (1997)

    Article  Google Scholar 

  5. V. Strashilov, Efficiency of poly(vinylidene fluoride) thin films for excitation of surface acoustic waves. J. Appl. Phys. 88(6), 3582–3586 (2000)

    Article  ADS  Google Scholar 

  6. B. Vigolo, B. Vincent, J. Eschbach, P. Bourson, J.F. Marêché, E. McRae, A. Müller, A. Soldatov, J.M. Hiver, A. Dahoun, D. Rouxel, Multiscale characterization of single-walled carbon nanotube/polymer composites by coupling raman and brillouin spectroscopy. J. Phys. Chem. C 113(41), 17648–17654 (2009)

    Article  Google Scholar 

  7. J. Eschbach, D. Rouxel, B. Vincent, Y. Mugnier, C. Galez, R. Le Dantec, P. Bourson, Development and characterization of nanocomposite materials. Mater. Sci. Eng. C 27(5–8), 1260–1264 (2007)

    Article  Google Scholar 

  8. R. Bactavatchalou, P. Alnot, J. Bailer, M. Kolle, U. Müller, M. Philipp, W. Possart, D. Rouxel, R. Sanctuary, A. Tschöpe, C. Vergnat, B. Wetzel, J.K. Krüger, The generalized Cauchy relation: a probe for local structure in materials with isotropic symmetry. J. Phys. Conf. Ser. 40(1), 111–117 (2006)

    Article  ADS  Google Scholar 

  9. J. Stroyan, Processing and characterization of PVDF, PVDF-TrFE and PVDF-TrFE-PzT composites, MS Thesis, Washington State University, 2004

  10. T. Furukawa, K. Ishida, E. Fukada, Piezoelectric properties in the composite systems of polymers and PZT ceramics. J. Appl. Phys. 50, 4904–4912 (1979)

    Article  ADS  Google Scholar 

  11. H.L.W. Chan, S.T. Lau, K.W. Kwok, and C.L. Choy, PZT/P(VDF/TrFE) nanocomposite hydrophones for ultrasonic measurements. 1998 IEEE Ultrasonics Symposium, vol. 1, pp. 611–614

  12. K. Ng, H. Lai, H. Chan, C. Choy, Piezoelectric and pyroelectric properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1308–1315 (2000)

    Article  Google Scholar 

  13. A. Lonjon, L. Laffont, P. Demont, E. Dantras, C. Lacabanne, Structural and electrical properties of gold nanowires/P(VDF-TrFE) nanocomposites. J. Phys. D Appl. Phys. 43, 345401 (2010). doi:10.1088/0022-3727/43/34/345401

    Article  Google Scholar 

  14. M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, B. Vincent, New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by xps analysis. J. Nanosci. Nanotechnol. 9(8), 4780–4785 (2009)

    Article  Google Scholar 

  15. Y. Mugnier, L. Houf, M. El-Kass, R. Le Dantec, G. Djanta, L. Badie, R. Hadji, B. Vincent, J. Esshbach, D. Rouxel, C. Galez, In situ crystallization and growth dynamics of acentric iron Iodate nanocrystals in w/o microemulsions probed by Hyper-Rayleigh scattering measurements. J. Phys. Chem. C 115, 23–30 (2011)

    Article  Google Scholar 

  16. V.S. Nguyen, D. Rouxel, R. Hadji, B. Vincent, Y. Fort, Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions. Ultrason. Sonochem. 18(1), 382–388 (2011)

    Article  Google Scholar 

  17. R. Hadji, V.S. Nguyen, B. Vincent, D. Rouxel, F. Bauer, Preparation and characterization of P(VDF-TrFE)/Al2O3 nanocomposite. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(1), 163–167 (2012)

    Article  Google Scholar 

  18. C. Galez, Y. Mugnier, J. Bouillot, Y. Lambert, R. Le Dantec, Synthesis and characterisation of Fe (IO3)3 nanosized powders. J. Alloys Compd. 412, 261–264 (2006)

    Article  Google Scholar 

  19. K. Tashiro, M. Kobayashi, H. Tadokoro, E. Fukada, Calculation of elastic and piezoelectric constants of polymer crystals by a point charge model: application to poly(vinylidene fluoride) form I. Macromolecules 13, 691–698 (1980)

    Article  ADS  Google Scholar 

  20. C. Domenici, D. de Rossi, A. Bacci, S. Benatti, Shear stress detection in an elastic layer by a piezoelectric polymer tactile sensor. IEEE Trans. Electr. Insul. 24(6), 1077–1081 (1989)

    Article  Google Scholar 

  21. B. Auld, J. Gagnepain, Shear properties of polarized PVF 2 film studied by the piezoelectric resonance method. J. Appl. Phys. 50(8), 5511–5512 (1979)

    Article  ADS  Google Scholar 

  22. R.S. Wagers, SAW transduction on silicon substrates with PVF2 films. 1979 IEEE Ultrasonics Symposium, pp. 645–648. doi:10.1109/ULTSYM.1979.197283

  23. K. Omote, H. Ohigashi, Shear piezoelectric properties of vinylidene fluoride trifluoroethylene copolymer, and its application to transverse ultrasonic transducers. Appl. Phys. Lett. 66(17), 2215–2217 (1995)

    Article  ADS  Google Scholar 

  24. L.F. Brown, The effects of material selection for backing and wear protection/quarter-wave matching of piezoelectric polymer ultrasound transducers. 2000 IEEE Ultrasononics Symposium, vol. 2, pp. 1029–1032

  25. A. Ambrosy, K. Holdik, Piezoelectric PVDF films as ultrasonic transducers. J. Phys. E Sci. Instrum. 17, 856–859 (1984)

    Article  ADS  Google Scholar 

  26. Private communication of F. Bauer, CEO of Piezotech SA (material provided by Solvay)

  27. E. Dieulesaint and D. Royer, Ondes Elastiques dans les Solides: Application au Traitement du Signal, vol. 9, chap. 9 (Masson, Paris, 1974), chs. 8(a), 7(b)

  28. S. Mendes, C. Costa, C. Caparros, V. Sencadas, S. Lanceros-Mendez, Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J. Mater. Sci. (2011). doi:10.1007/s10853-011-5916-7

    Google Scholar 

  29. J. Soulier, Hydrophone based on piezoelectric polymer. Proc. Ferroelectric Polymer Shock and Dynamic Sensor Workshop, ISL, Saint-Louis, France, Sept 13–15, 1994, 19.1

  30. M. Achaby, F. Arrakhiz, S. Vaudreuil, El M. Essassi, A. Qaiss, M. Bousmina, Nanocomposite films of poly(vinylidene fluoride) filled with polyvinylpyrrolidone-coated multiwalled carbon nanotubes: enhancement of β-polymorph formation and tensile properties. Polym. Eng. Sci. 53(1), 34–43 (2013)

    Article  Google Scholar 

  31. W. Wang, S. Zhang, L. Srisombat, T. Lee, R. Advincula, Gold-nanoparticle- and gold-nanoshell-induced polymorphism in poly(vinylidene fluoride). Macromol. Mater. Eng. 296(2), 178–184 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. M. Rogojerov from the Institute of Organic Chemistry, Bulgarian Academy of Sciences for the infrared experiment and Dr. A. Hurrel from Precision Acoustics Ltd., UK, and for valuable discussion. One of us (V. S.) wishes to thank the University of Nancy for their hospitality during a research visit. This study has been partially supported by the Research Fund of Sofia University under grants NN 21/2011, 146/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Vincent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strashilov, V., Alexieva, G., Vincent, B. et al. Structural impact on piezoelectricity in PVDF and P(VDF-TrFE) thin films. Appl. Phys. A 118, 1469–1477 (2015). https://doi.org/10.1007/s00339-014-8911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8911-4

Keywords

Navigation