Skip to main content
Log in

Positron emission particle tracking in pulsatile flow

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Positron emission particle tracking (PEPT) is increasingly used to understand the flow characteristics in complex systems. This research utilizes PEPT to measure pulsatile flow of frequency 2.1 Hz in an elastic Masterkleer PVC tube of 19 mm inner diameter and 3.2 mm wall thickness. Anion exchange resin beads are labeled with 18F and delivered to a pump driven flow loop with motorized ball valve used to develop the pulsatile flow. Data are collected in the tube with circular cross section, and measurements are also collected with a section of the tube pinched. Nominal flow velocities are near 1 m/s and Reynolds numbers near 20,000. Many thousand PEPT particle traces are collected and synchronized with the flow pulsation. These Lagrangian data are presented as a series of 20 still frames depicting the 3-D velocity field present during each phase of the flow pulsation. Pressure data are also collected to resolve the pressure wave front moving through the open elastic tube at velocity 15.2 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. MATLAB R2015a and R2016a (MathWorks, Inc., Natick, MA, 2015 and 2016).

References

  • Bao Q, Chen M, Stout D, Chatziioannous A, Newport D (2009) Performance evaluation of the inveon dedicated PET preclinical tomograph based on the NEMA NU-4 standards. J Nucl Med 50(3):401–408. doi:10.2967/jnumed.108.056374

    Article  Google Scholar 

  • Benam A, Shadpour M, Fatouraee N, Pashaiee A, Khani M (2008) A new system to analyze pulsatile flow characteristics in elastic tubes for hemodynamic applications. Am J Appl Sci 5(12):1730–1736. doi:10.3844/ajassp.2008.1730.1736

    Article  Google Scholar 

  • Bickell M, Buffler A, Govender I, Parker D (2012) A new line density tracking algorithm for PEPT and its application to multiple tracers. Nucl Instrum Methods Phys Res 82:36–41. doi:10.1016/j.nima.2012.04.037

    Article  Google Scholar 

  • Buther F, Dawood M, Stegger L, Wübbeling F, Schäfers M, Schober O, Schäfers KP (2009) List mode-driven cardiac and respiratory gating in PET. J Nucl Med 50(5):674–681. doi:10.2967/jnumed.108.059204

    Article  Google Scholar 

  • Chang Y, Hoffmann A (2015) A Lagrangian study of liquid flow in a reverse-flow hydrocyclone using positron emission particle tracking. Exp Fluids 56(1):1–14. doi:10.1007/s00348-014-1875-5

    Article  Google Scholar 

  • Crocker J, Grier D (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310. doi:10.1006/jcis.1996.0217

    Article  Google Scholar 

  • Geers AJ, Larrabide I, Radaelli AG, Bogunovic H, Kim M, Gratama van Andel HA, Majoie CB, VanBavel E, Frangi AF (2011) Patient-specific hemodynamics of intracranial aneurysms from 3D rotational angiography and CT angiography: an in vivo reproducibility study. Am J Neuroradiol 32(3):581–586. doi:10.3174/ajnr.A2306

    Article  Google Scholar 

  • Ha H, Hwang D, Kim GB, Kweon J, Lee SJ, Baek J, Kim YH, Kim N, Yang DH (2016) Estimation of turbulent kinetic energy using 4D phase-contrast MRI: effect of scan parameters and target vessel size. Magn Reson Imaging 34:715–723. doi:10.1016/j.mri.2016.03.008

    Article  Google Scholar 

  • Hassan YA, Canaan RE (1991) Full-field bubbly flow velocity measurements using a multiframe particle tracking technique. Exp Fluids 12:49–60. doi:10.1007/BF00226565

    Article  Google Scholar 

  • Hoffman AC, Dechsiri C, van de Wiel F, Dehling HG (2005) PET investigation of a fluidized particle: spatial and temporal resolution and short term motion. Meas Sci Technol 16:851–858. doi:10.1088/0957-0233/16/3/029

    Article  Google Scholar 

  • Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist Q 2:83–97.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuhn HW (1956) Variants of the Hungarian method for assignment problems. Nav Res Logist Q 3:253–258.

    Article  MATH  MathSciNet  Google Scholar 

  • Moody F J (1990) Introduction to unsteady thermofluid mechanics. Wiley-Interscience. ISBN-10: 047185705X

  • Mordant N, Crawford AM, Bodenschatz E (2004) Experimental Lagrangian acceleration probability density function measurement. Physica D 193:245–251. doi:10.1016/j.physd.2004.01.041

    Article  MATH  Google Scholar 

  • Munkres J (1957) Algorithms for the assignment and transportation problems. J Soc Ind Appl Math 5(1):32–38

    Article  MATH  MathSciNet  Google Scholar 

  • Parker D, Fan X (2008) Positron emission particle tracking-application and labelling techniques. Particuology 6(1):16–23. doi:10.1016/j.cpart.2007.10.004

    Article  Google Scholar 

  • Parker D, Broadbent C, Fowles P, Hawkesworth M, Mcneil P (1993) Positron emission particle tracking-a technique for studying flow within engineering equipment. Nucl Instrum MethodS Phys Res A 326(3):592–609. doi:10.1016/0168-9002(93)90864-E

    Article  Google Scholar 

  • Randles A, Draeger EW, Bailey PE (2015) Massively parallel simulations of hemodynamics in the primary large arteries of the human vasculature. J Comput Sci 9:70–75. doi:10.1016/j.jocs.2015.04.003

    Article  Google Scholar 

  • Sbalzarini I, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Biol 151(2):182–195. doi:10.1016/j.jsb.2005.06.002

    Article  Google Scholar 

  • Shaw R F (1980) Signalling particles for introduction into blood flowing in a vessel of interest. US Patent 4,224,203.

  • Tai YC, Chatziioannou A, Siegel S, Young J, Newport D, Goble RN, Nutt RE, Cherry SR (2001) Performance evaluation of the microPET P4: a PET system dedicated to animal imaging. Phys Med Biol 46:1845–1862. doi:10.1088/0031-9155/46/7/308

    Article  Google Scholar 

  • Usmani AY, Muralidhar K (2016) Pulsatile flow in a compliant stenosed asymmetric model. Exp Fluids 57:186. doi:10.1007/s00348-016-2274-x

    Article  Google Scholar 

  • Wiggins C, Santos R, Ruggles A (2016) A novel clustering approach to positron emission particle tracking. Nucl Instrum Method Phys Res A 811:18–24. doi:10.1016/j.nima.2015.11.136

  • Wiggins C, Santos R, Ruggles A (2017) A feature point identification method for positron emission particle tracking with multiple tracers. Nucl Instrum Methods Phys Res A 843:22–28. doi:10.1016/j.nima.2016.10.057

    Article  Google Scholar 

  • Yang Z, Parker D, Fryer P, Bakalis S, Fan X (2006) Multiple-particle tracking—an improvement for positron particle tracking. Nucl Instrum Methods Phys Res 564(1):332–338. doi:10.1016/j.nima.2006.04.054

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate NNSA Stewardship Sciences Academic Programs (SSAP) for supporting this research. This material is based upon work supported under an Integrated University Program Graduate Fellowship. The authors thank Alan Stuckey of University of Tennessee Medical Center for providing the 18F used in these experiments and Howard Cyr for giving us access to Mastersizer 3000 laser particle size analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitant Patel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, N., Wiggins, C. & Ruggles, A. Positron emission particle tracking in pulsatile flow. Exp Fluids 58, 42 (2017). https://doi.org/10.1007/s00348-017-2330-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-017-2330-1

Keywords

Navigation