Skip to main content
Log in

Corollary discharge inhibition and audition in the stridulating cricket

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The romantic notion of crickets singing on a warm summer’s evening is quickly dispelled when one comes ear to ear with a stridulating male. Remarkably, stridulating male crickets are able to hear sounds from the environment despite generating a 100 db song (Heiligenberg 1969; Jones and Dambach 1973). This review summarises recent work examining how they achieve this feat of sensory processing. While the responsiveness of the crickets’ peripheral auditory system (tympanic membrane, tympanic nerve, state of the acoustic spiracle) is maintained during sound production, central auditory neurons are inhibited by a feedforward corollary discharge signal precisely timed to coincide with the auditory neurons’ maximum response to self-generated sound. In this way, the corollary discharge inhibition prevents desensitisation of the crickets’ auditory pathway during sound production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ball EE, Oldfield BP, Rudolph KM (1989) Auditory organ structure, development and function. In: Huber F et al (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca London, pp 391–422

    Google Scholar 

  • Bell CC (1984) Effects of motor commands on sensory inflow, with examples from electric fish. In: Bolis L et al (eds) Comparative physiology of sensory systems. Cambridge University Press, Cambridge, pp 636–647

    Google Scholar 

  • Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 146:229–253

    PubMed  CAS  Google Scholar 

  • Blakemore S-J, Wolpert DW, Frith CD (1998) Central cancellation of self-produced tickle sensation. Nature Neurosci 1:635–640

    Article  PubMed  CAS  Google Scholar 

  • Borg E, Counter S (1989) The middle-ear muscles. Sci Am 261:62–68

    Article  Google Scholar 

  • Boyan GS (1980) Auditory neurones in the brain of the cricket Gryllus bimaculatus (De Geer). J Comp Physiol A 140:81–93

    Article  Google Scholar 

  • Burrows M, Matheson T (1994) A presynaptic gain control mechanism among sensory neurons of a locust leg proprioceptor. J Neurosci 14:272–282

    PubMed  CAS  Google Scholar 

  • Casaday B, Hoy RR (1977) Auditory interneurons in the cricket Teleogryllus oceanicus: physiological and anatomical properties. J Comp Physiol A 156:789–801

    Google Scholar 

  • Clarac F, Cattaert D (1996) Invertebrate presynaptic inhibition and motor control. Exp Brain Res 112:163–180

    Article  PubMed  CAS  Google Scholar 

  • Creutzfeldt O, Ojemann G, Lettich E (1989) Neuronal activity in the human lateral temporal lobe II. Responses to the subjects own voice. Exp Brain Res 77:476–489

    Article  PubMed  CAS  Google Scholar 

  • Delcomyn F (1977) Corollary discharge to cockroach giant interneurons. Nature 269:160–162

    Article  PubMed  CAS  Google Scholar 

  • El Manira A, Tegner J, Grillner S (1996) Locomotor-related presynaptic modulation of primary afferents in the lamprey. Eur J Neurosci 9:696–705

    Article  Google Scholar 

  • Gossard J-P, Cabelguen J-M, Rossignol S (1991) An intracellular study of muscle primary afferents during fictive locomotion in the cat. J Neurophysiol 65:914–926

    PubMed  CAS  Google Scholar 

  • Grüsser O-J (1986) Interaction of efferenct and afferent signals in visual perception a history of ideas and experimental paradigms. Acta Psychologica 63:3–21

    Article  PubMed  Google Scholar 

  • Hedwig B (1986) On the role in stridulation of plurisegmental interneurons of the acridid grasshopper Omocestus viridulus L. II. Anatomy and physiology of ascending and T-shaped interneurons. J Comp Physiol A 158:429–444

    Article  Google Scholar 

  • Hedwig B (1990) Modulation of auditory responsiveness in stridulating grasshoppers. J Comp Physiol A 167:847–856

    Article  Google Scholar 

  • Hedwig B (2000) Control of cricket stridulation by a command neuron: efficacy depends on the behavioural state. J Neurophysiol 83:712–722

    PubMed  CAS  Google Scholar 

  • Hedwig B, Meyer J (1994) Auditory information processing in stridulating grasshoppers: tympanic membrane vibrations and neurophysiology. J Comp Physiol A 174:121–131

    Article  Google Scholar 

  • Heiligenberg W (1969) The effect of stimulus chirps on a cricket’s chirping. Z Vergl Physiol 65:70–97

    Article  Google Scholar 

  • Hennig RM, Weber T, Huber F, Kleindienst H-U, Moore TE, Popov AV (1994) Auditory threshold change in singing cicadas. J Exp Biol 187:45–55

    PubMed  Google Scholar 

  • Hill KG, Boyan GS (1976) Directional hearing in crickets. Nature 262:390–391

    Article  PubMed  CAS  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip: Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Jones MDR, Dambach M (1973) Response to sound in crickets without tympanal organs (Gryllus campestris L.). J Comp Physiol A 87:89–98

    Article  Google Scholar 

  • Kirzinger A, Jürgens U (1991) Vocalization-correlated single-unit activity in the brain stem of the monkey. Exp Brain Res 84:545–560

    Article  PubMed  CAS  Google Scholar 

  • Kleindienst H-U, Wohlers DW, Larsen ON (1983) Tympanal membrane motion is necessary for hearing in crickets. J Exp Biol 151:397–400

    Google Scholar 

  • Larsen ON, Michelsen A (1978) Biophysics of the ensiferan ear III. The cricket ear as a four input system. J Comp Physiol A 123:217–227

    Article  Google Scholar 

  • Larsen ON, Kleindienst K-U, Michelsen A (1989) Biophysical aspects of sound reception. In: Huber F et al (eds) Cricket behaviour and neurobiology. Cornell University Press, Ithaca London, pp 364–390

    Google Scholar 

  • Li W-C, Soffe SR, Roberts A (2002) Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate. J Neurosci 22:10924–10934

    PubMed  CAS  Google Scholar 

  • McCasland JS, Konishi M (1981) Interaction between auditory and motor activities in an avian song control nucleus. Proc Natl Acad Sci USA 78:7815–7819

    Article  PubMed  CAS  Google Scholar 

  • McCloskey DI (1981) Corollary discharges: motor commands and perception. In: Brooks VB (ed) Handbook of physiology. The nervous system. Am Physiol Soc, Bethesda, pp 1415–1447

    Google Scholar 

  • Metzner W (1989) A possible neuronal basis for Doppler-shift compensation in echolocating horseshoe bats. Nature 341:529–532

    Article  PubMed  CAS  Google Scholar 

  • Metzner W (1993) An audio-vocal interface in echolocating horseshoe bats. J Neurosci 13:1899–1915

    PubMed  CAS  Google Scholar 

  • Meyer J, Elsner N (1995) How respiration affects auditory sensitivity in the grasshopper Chorthippus biguttulus (L.). J Comp Physiol A 176:563–573

    Article  Google Scholar 

  • Meyer J, Hedwig B (1995) The influence of tracheal pressure changes on the responses of the tympanal membrane and auditory receptors in the locust Locusta migratoria L. J Exp Biol 198:1327–1339

    PubMed  Google Scholar 

  • Michelsen A (1994) Directional hearing in crickets and other small animals. Fort der Zool 39:195–207

    Google Scholar 

  • Michelsen A (1998) Biophysics of sound localization in insects. In: Hoy RR et al (eds) Comparative hearing: insects. Springer, Berlin Heidelberg New York, pp 18–62

    Google Scholar 

  • Müller-Preuss P, Ploog D (1981) Inhibition of auditory cortical neurons during phonation. Brain Res 215:61–76

    Article  PubMed  Google Scholar 

  • Murphey RK, Palka J (1974) Efferent control of cricket giant fibres. Nature 248:249–251

    Article  Google Scholar 

  • Narins PM (1992) Reduction of tympanic membrane displacement during vocalization of the arboreal tree frog, Eleutherodactylus coqui. J Acoust Soc Am 91:3551–3557

    Article  PubMed  CAS  Google Scholar 

  • Nolen TG, Hoy RR (1983) Initiation of behaviour by single neurons: the role of behavioural context. Science 226:992–994

    Article  Google Scholar 

  • Nolen TG, Hoy RR (1987) Postsynaptic inhibition mediates high-frequency selectivity in the cricket Teleogryllus oceanicus: implications for flight pyhonotaxis behaviour. J Neurosci 7:2081–2096

    PubMed  CAS  Google Scholar 

  • Numminen J, Salmelin R, Hari R (1999) Subject’s own speech reduces reactivity of the human auditory cortex. Neurosci Lett 265:119–122

    Article  PubMed  CAS  Google Scholar 

  • Otto D (1978) Anderungen von Gesangsparametern bei der Grille (Gryllus campestris L.) nach Injektion von Pharmaka ins Gehirn. Verh Dt Zool Ges 245

  • Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639

    PubMed  CAS  Google Scholar 

  • Popov AV, Markovich AM, Andjan AS (1978) Auditory interneurons in the prothoracic ganglion of the cricket, Gryllus bimaculatus deGeer I. The large segmental auditory neuron (LSAN). J Comp Physiol A 126:183–192

    Article  Google Scholar 

  • Poulet JFA, Hedwig B (2001) Tympanic membrane oscillations and auditory receptor activity in the stridulating cricket Gryllus bimaculatus. J Exp Biol 204:1281–1293

    PubMed  CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–876

    Article  PubMed  CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2003a) Corollary discharge inhibition of ascending auditory information in the stridulating cricket. J Neurosci 23:4717–4725

    PubMed  CAS  Google Scholar 

  • Poulet JFA, Hedwig B (2003b) A corollary discharge mechanism modulates central auditory processing in singing crickets. J Neurophysiol 89:1528–1540

    Article  PubMed  CAS  Google Scholar 

  • Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J Neurosci 24:2102–2111

    Article  PubMed  CAS  Google Scholar 

  • Samson A-H, Pollack GS (2002) Encoding of sound localization cues by an identified auditory interneuron: effects of stimulus temporal pattern. J Neurophysiol 88:2322–2328

    Article  PubMed  Google Scholar 

  • Schuller G (1979) Vocalization influences auditory processing in collicular neurons of the CF-FM-bat, Rhinolophus ferrumequinum. J Comp Physiol A 132:39–46

    Article  Google Scholar 

  • Sillar KT, Skorupski P (1986) Central input to primary afferent neurons in crayfish, Pacifastacus leniusculus, is correlated with rhythmic motor output of thoracic ganglia. J Neurophysiol 55:678–688

    PubMed  CAS  Google Scholar 

  • Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of movements. Science 296:1480–1482

    Article  PubMed  CAS  Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psych 43:482–489

    Article  CAS  Google Scholar 

  • Stumpner A, Atkins G, Stout JF (1995) Processing of unilateral and bilateral auditory inputs by the ON1 and L1 interneurons of the cricket Acheta domesticus and comparison to other cricket species. J Comp Physiol A 177:379–388

    Article  Google Scholar 

  • Suga N, Jen P (1975) Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol 62:277–311

    PubMed  CAS  Google Scholar 

  • Suga N, Schlegel P (1972) Neural attenuation of responses to emitted sounds in echolocating bats. Science 177:82–84

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Shimozawa T (1974) Site of neural attenuation of responses to self-vocalized sounds in echolocating bats. Science 183:1211–1213

    Article  PubMed  CAS  Google Scholar 

  • Wenzel B, Hedwig B (1999) Neurochemical control of cricket stridulation revealed by pharmacological injections into the brain. J Exp Biol 202:2203–2216

    PubMed  CAS  Google Scholar 

  • Wohlers DW, Huber F (1978) Intracellular recording and staining of cricket auditory interneurons (Gryllus campestris L., Gryllus bimaculatus DeGeer). J Comp Physiol A 127:11–28

    Article  Google Scholar 

  • Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol A 146:161–173

    Article  Google Scholar 

  • Wolf H, Burrows M (1995) Proprioceptive sensory neurons of a locust leg receive rhythmic presynaptic inhibition during walking. J Neurosci 15:5623–5636

    PubMed  CAS  Google Scholar 

  • Wolf H, Helversen OV (1986) “Switching-off” of an auditory interneuron during stridulation in the acridid grasshopper Chorthippus biguttulus L. J Comp Physiol A 158:861–871

    Article  PubMed  CAS  Google Scholar 

  • Zaretsky M, Rowell CHF (1979) Saccadic suppression by corollary discharge in the locust. Nature 280:583–585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I thank Dr Berthold Hedwig for his helpful comments on an earlier version of this manuscript. This work was supported by the BBSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. A. Poulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulet, J.F.A. Corollary discharge inhibition and audition in the stridulating cricket. J Comp Physiol A 191, 979–986 (2005). https://doi.org/10.1007/s00359-005-0027-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-005-0027-z

Keywords

Navigation