Skip to main content

Advertisement

Log in

From optics to attention: visual perception in barn owls

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Barn owls are nocturnal predators which have evolved specific sensory and morphological adaptations to a life in dim light. Here, some of the most fundamental properties of spatial vision in barn owls are reviewed. The eye with its tubular shape is rigidly integrated in the skull so that eye movements are very much restricted. The eyes are oriented frontally, allowing for a large binocular overlap. Accommodation, but not pupil dilation, is coupled between the two eyes. The retina is rod dominated and lacks a visible fovea. Retinal ganglion cells form a marked region of highest density that extends to a horizontally oriented visual streak. Behavioural visual acuity and contrast sensitivity are poor, although the optical quality of the ocular media is excellent. A low f-number allows high image quality at low light levels. Vernier acuity was found to be a hyperacute percept. Owls have global stereopsis with hyperacute stereo acuity thresholds. Neurons of the visual Wulst are sensitive to binocular disparities. Orientation based saliency was demonstrated in a visual-search experiment, and higher cognitive abilities were shown when the owl’s were able to use illusory contours for object discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anzai A, Ohzawa I, Freeman RD (1999a) Neural mechanisms for processing binocular information I. Simple cells. J Neurophysiol 82:891–908

    PubMed  CAS  Google Scholar 

  • Anzai A, Ohzawa I, Freeman RD (1999b) Neural mechanisms for processing binocular information II. Complex cells. J Neurophysiol 82:909–924

    PubMed  CAS  Google Scholar 

  • Asadollahi A, Mysore SP, Knudsen EI (2010) Stimulus-driven competition in a cholinergic midbrain nucleus. Nat Neurosci 13:889–895

    Article  PubMed  CAS  Google Scholar 

  • Bachmann T, Klän S, Baumgartner W, Klaas M, Schröder W, Wagner H (2007) Morphometric characterisation of wing feathers of the barn owl Tyto alba pratincola and the pigeon Columba livia. Front Zool 4:1–15

    Article  Google Scholar 

  • Bachmann T, Wagner H (2011) The three-dimensional shape of serrations at barn owl wings: towards a typical natural serration as a role model for biomimetic applications. J Anat (in press)

  • Belleville S, Wilkinson F (1986) Vernier acuity in the cat: Its relation to hyperacuity. Vision Res 26:1263–1271

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H, Schmitz H, von der Emde G (2004) Nature as a model for technical sensors. J Comp Physiol A 190:971–981

    Article  CAS  Google Scholar 

  • Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosi 33:49–70

    Article  CAS  Google Scholar 

  • Bradshaw MF, Rogers BJ (1999) Sensitivity to horizontal and vertical corrugations defined by binocular disparity. Vision Res 39:3049–3056

    Article  PubMed  CAS  Google Scholar 

  • Campbell FW (1965) Optical and retinal factors affecting visual resolution. J Physiol 181:576–593

    PubMed  CAS  Google Scholar 

  • Cornsweet TN (1970) Visual perception. Academic Press, New York

    Google Scholar 

  • Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    Article  PubMed  CAS  Google Scholar 

  • Davis JD, Barrett SF, Wright CHG, Wilcox M (2008) Bioinspired minimal machine multiaperture apposition vision system. Biomed Sci Instrum 44:373–379

    PubMed  Google Scholar 

  • De la Cera EG, Rodriguez G, Llorente L, Schaeffel F, Marcos S (2006) Optical aberrations in the mouse eye. Vision Res 46:2546–2553

    Article  Google Scholar 

  • Dice LR (1945) Minimum intensities of illumination under which owls can find dead prey by sight. Am Nat 79:385–416

    Article  Google Scholar 

  • Dulac S, Knudsen EI (1990) Neural maps of head movement vector and speed in the optic tectum of the barn owl. J Neurophysiol 1:131–146

    Google Scholar 

  • Dyson ML, Klump GM, Gauger B (1998) Absolute hearing thresholds and critical masking ratios in the European barn owl: a comparison with other owls. J Comp Physiol A 182:695–702

    Article  Google Scholar 

  • Evans HE, Martin GR (1993) Organa sensuum. In: Baumel JJ, King AS, Breazile JE et al (eds) Handbook of avian anatomy. University of Cambridge, Cambridge, pp 585–611

    Google Scholar 

  • Fite KV (1973) Anatomical and behavioral correlates of visual acuity in the Great Horned Owl. Vision Res 13:219–230

    Article  PubMed  CAS  Google Scholar 

  • Fite KV, Rosenfield-Wessels S (1975) Comparative study of deep avian foveas. Brain Behav Evol 12:97–115

    Article  PubMed  CAS  Google Scholar 

  • Fux M, Eilam D (2009) How barn owls (Tyto alba) visually follow moving voles (Microtus socialis) before attacking them. Physiol Behav 98:359–366

    Article  PubMed  CAS  Google Scholar 

  • Ghim MM, Hodos W (2006) Spatial contrast sensitivity of birds. J Comp Physiol A 192:523–534

    Article  Google Scholar 

  • Graham N (1972) Spatial frequency channels in the human visual system: effects of luminance and pattern drift rate. Vision Res 12:53–68

    Article  PubMed  CAS  Google Scholar 

  • Gunter R (1951) The absolute threshold for vision in the cat. J Physiol 114:8–15

    PubMed  CAS  Google Scholar 

  • Güntürkün O (2000) Sensory physiology: vision. In: Whittow GC (ed) Sturkie’s avian physiology. Academic Press, New York, pp 1–19

    Chapter  Google Scholar 

  • Harmening WM, Göbbels K, Wagner H (2007a) Vernier acuity in barn owls. Vision Res 47:1020–1026

    Article  PubMed  Google Scholar 

  • Harmening WM, Vobig MA, Walter P, Wagner H (2007b) Ocular aberrations in barn owl eyes. Vision Res 47:2934–2942

    Article  PubMed  Google Scholar 

  • Harmening WM, Nikolay P, Orlowski J, Wagner H (2009) Spatial contrast sensitivity and grating acuity of barn owls. J Vision 9:1–12

    Article  Google Scholar 

  • Harmening WM, Orlowski J, Ben-Shahar O, Wagner H (2011) Overt attention towards oriented objects in free viewing barn owls. Proc Natl Acad Sci USA 108:8461–8466

    Article  PubMed  CAS  Google Scholar 

  • He JC, Burns SA, Marcos S (2000) Monochromatic aberrations in the accommodated human eye. Vision Res 40:41–48

    Article  PubMed  CAS  Google Scholar 

  • Hirsch J (1982) Falcon visual sensitivity to grating contrast. Nature 300:57–58

    Article  Google Scholar 

  • Hodos W, Ghim MM, Miller RF, Sternheim CE, Currie DG (1997) Comparative analysis of contrast sensitivity. Invest Ophth Vis Sci 634

  • Hodos W, Ghim MM, Potocki A, Fields JN, Storm T (2002) Contrast sensitivity in pigeons: a comparison of behavioral and pattern ERG methods. Doc Ophthalmol 104:107–118

    Article  PubMed  Google Scholar 

  • Hopkins JK, Spranklin BW, Gupta SK (2009) A survey of snake-inspired robot designs. Bioinspir Biomim 4:1–19

    Article  Google Scholar 

  • Howard IP, Rogers BJ (1999) Seeing in depth: depth perception. I Porteous, Toronto

    Google Scholar 

  • Howland HC, Merola S, Basarab JR (2004) The allometry and scaling of the size of vertebrate eyes. Vision Res 44:2043–2065

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160:106–154

    PubMed  CAS  Google Scholar 

  • Huxlin KR, Yoon G, Nagy L, Porter J, Williams D (2004) Monochromatic ocular wavefront aberrations in the awake-behaving cat. Vision Res 44:2159–2169

    Article  PubMed  Google Scholar 

  • Itti L, Koch C (2001) Computational modeling of visual attention. Nat Rev Neurosci 2:194–203

    Article  PubMed  CAS  Google Scholar 

  • Jones G, Holderied MW (2007) Bat echolocation calls: adaptation and convergent evolution. Proc R Soc B 274:905–912

    Article  PubMed  Google Scholar 

  • Jones MP, Pierce KE, Ward D (2007) Avian vision: a review of form and function. J Exot Pet Med 16:69–87

    Article  Google Scholar 

  • Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

    Google Scholar 

  • Karten HJ, Hodos W, Nauta WJ, Revzin AM (1973) Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the piegon (Columba livia) and owl (Speotyto cunicularia). J Comp Neurol 150:253–278

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki M (2009) Evolution of time-coding systems in weakly electric fishes. Zool Sci 26:587–599

    Article  PubMed  Google Scholar 

  • Kern TJ (1991) Exotic animal ophthalmology. In: Gelatt KJ (ed) Veterinary ophthalmology. Lippincott Williams & Wilkins, Baltimore, pp 1273–1305

    Google Scholar 

  • King AS, McLelland J (1984) Special sense organs. In: Birds: their structure and function. Bailliere Tindall, London, pp 284–314

    Google Scholar 

  • Knudsen EI, Konishi M (1979) Mechanisms of sound localization in the barn owl (Tyto-Alba). J Comp Physiol A 1:13–21

    Google Scholar 

  • Knudsen EI, Knudsen PF (1985) Vision guides the adjustment of auditory localization in young barn owls. Science 4725:545–548

    Article  Google Scholar 

  • Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417:322–328

    Article  PubMed  CAS  Google Scholar 

  • Koch UR, Wagner H (2002) Morphometry of auricular feathers of barn owls (Tyto alba). Eur J Morphol 40:15–21

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1973) Locatable and nonlocatable acoustic signals for barn owls. Am Nat 107:775–785

    Article  Google Scholar 

  • Konishi M (2006) Behavioral guides for sensory neurophysiology. J Comp Physiol A 192:671–676

    Article  CAS  Google Scholar 

  • Liang J, Williams DR (1997) Aberrations and retinal image quality of the normal human eye. J Opt Soc Am A 14:2873–2883

    Article  CAS  Google Scholar 

  • Martin GR (1974) Color vision in the tawny owl (Strix aluco). J Comp Physiol Psych 86:133–141

    Article  CAS  Google Scholar 

  • Martin GR (1977) Absolute visual threshold and scotopic spectral sensitivity in the tawny owl Strix aluco. Nature 268:636–638

    Article  PubMed  CAS  Google Scholar 

  • Martin GR (1982) An owl’s eye—schematic optics and visual performance in Strix aluco. J Comp Physiol A 145:341–349

    Article  Google Scholar 

  • Martin GR (1984) The visual fields of the tawny owl, Strix aluco L. Vision Res 24:1739–1751

    Article  PubMed  CAS  Google Scholar 

  • Masino T, Knudsen EI (1993) Orienting head movements resulting from electrical microstimulation of the brain-stem tegmentum in the barn owl. J Neurosci 1:351–370

    Google Scholar 

  • McKee S, Westheimer G (1978) Improvement in vernier acuity with practice. Percept Psychophys 24:258–262

    Article  PubMed  CAS  Google Scholar 

  • McKendrick AM, Brennan NA (1996) Distribution of astigmatism in the adult population. J Opt Soc Am A 13:206–214

    Article  CAS  Google Scholar 

  • Merigan WH, Katz LM (1990) Spatial resolution across the macaque retina. Vision Res 30:985–991

    Article  PubMed  CAS  Google Scholar 

  • Meyer D (1977) The avian eye and its adaptations. In: Crescitelli F (ed) Handbook of sensory physiology. Springer, Berlin, pp 559–561

    Google Scholar 

  • Murphy C, Howland H (1983) Owl eyes: accommodation, corneal curvature and refractive state. J Comp Physiol A 151:277–284

    Article  Google Scholar 

  • Mysore SP, Asadollahi A, Knudsen EI (2010) Global inhibition and stimulus competition in the owl optic tectum. J Neurosci 30:1727–1738

    Article  PubMed  CAS  Google Scholar 

  • Mysore SP, Asadollahi A, Knudsen EI (2011) Signaling of the strongest stimulus in the owl optic tectum. J Neurosci 31:5186–5196

    Article  PubMed  CAS  Google Scholar 

  • Naarendorp F, Sato Y, Cajdric A, Hubbard NP (2001) Absolute and relative sensitivity of the scotopic system of rat: electroretinography and behavior. Vis Neurosci 18:641–656

    Article  PubMed  CAS  Google Scholar 

  • Nieder A (2002) Seeing more than meets the eye: processing of illusory contours in animals. J Comp Physiol A 188:249–260

    Article  CAS  Google Scholar 

  • Nieder A, Wagner H (1999) Perception and neuronal coding of subjective contours in the owl. Nat Neurosci 2:660–663

    Article  PubMed  CAS  Google Scholar 

  • Nieder A, Wagner H (2000) Horizontal-disparity tuning of neurons in the visual forebrain of the behaving barn owl. J Neurophysiol 83:2967–2979

    PubMed  CAS  Google Scholar 

  • Nieder A, Wagner H (2001) Hierarchical processing of horizontal disparity information in the visual forebrain of behaving owls. J Neurosci 21:4514–4522

    PubMed  CAS  Google Scholar 

  • Oehme H (1961) Vergleichend-histologische Untersuchung an der Retina von Eulen. Zool Jb Anat 79:439–478

    Google Scholar 

  • Ohayon S, van der Willigen RF, Wagner H, Katsman I, Rivlin E (2006) On the barn owl’s visual pre-attack behavior: I. Structure of head movements and motion patterns. J Comp Physiol A 192:927–940

    Article  Google Scholar 

  • Ohayon S, Harmening WM, Wagner H, Rivlin E (2008) Through a barn owl’s eyes: interactions between scene content and visual attention. Biol Cyb 98:115–132

    Article  Google Scholar 

  • Orlowski J (2009) Night vision in barn owls: visual resolution and absolute sensitivity under dark adaptation. Diploma thesis. Rheinisch-Westfaelische Technische Hochschule Aachen, Germany

  • Parkhurst DJ, Niebur E (2003) Scene content selected by active vision. Spat Vis 16:125–154

    Article  PubMed  Google Scholar 

  • Pasternak T, Merigan WH (1981) The luminance dependence of spatial vision in the cat. Vision Res 21:1333–1339

    Article  PubMed  CAS  Google Scholar 

  • Payne RS (1971) Acoustic location of prey by barn owls (Tyto alba). J Exp Biol 54:535–573

    PubMed  CAS  Google Scholar 

  • Pettigrew JD, Konishi M (1976) Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). Science 4254:675–678

    Article  Google Scholar 

  • Pettigrew JD, Wallman J, Wildsoet CF (1990) Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature 343:362–363

    Article  PubMed  CAS  Google Scholar 

  • Pirenne MH, Marriott FH, O’Doherty EF (1957) Individual differences in night-vision efficiency. Special report series, Medical Research Council, Great Britain 294:1–69

    Google Scholar 

  • Ramamirtham R, Norton TT, Siegwart JT, Roorda A (2003) Wave aberrations of tree shrew eyes. In E-Abstract: Invest Ophth Vis Sci U324

  • Ramamirtham R, Kee CS, Hung LF, Qiao-Gridera Y, Roorda A, Smith EA (2006) Monochromatic ocular wave aberrations in young monkeys. Vision Res 46:3616–3633

    Article  PubMed  Google Scholar 

  • Reches A, Gutfreund Y (2008) Stimulus-specific adaptations in the gaze control system of the barn owl. J Neurosci 28:1523–1533

    Article  PubMed  CAS  Google Scholar 

  • Reches A, Netser S, Gutfreund Y (2010) Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl. J Neurosci 30:6991–6998

    Article  PubMed  CAS  Google Scholar 

  • Reymond L, Wolfe J (1981) Behavioural determination of the contrast sensitivity function of the eagle Aquila audax. Vision Res 21:263–271

    Article  PubMed  CAS  Google Scholar 

  • Reymond L (1985) Spatial visual acuity of the eagle Aquila audax: a behavioural, optical and anatomical investigation. Vision Res 25:1477–1491

    Article  PubMed  CAS  Google Scholar 

  • Roth LSV, Kelber A (2004) Nocturnal colour vision in geckos. Proc R Soc Lond B (Suppl) 6:485–487

    Article  Google Scholar 

  • Samuelson D (1991) Ophthalmic anatomy. In: Gelatt KN (ed) Veterinary ophthalmology. Lippincott Williams & Wilkins, Baltimore, pp 31–150

    Google Scholar 

  • Schaeffel F, Wagner H (1992) Barn owls have symmetrical accommodation in both eyes, but independent pupillary responses to light. Vision Res 32:1149–1155

    Article  PubMed  CAS  Google Scholar 

  • Schaeffel F, Wagner H (1996) Emmetropization and optical development of the eye of the barn owl (Tyto alba). J Comp Physiol A 178:491–498

    Article  Google Scholar 

  • Siemers BM, Schnitzler HU (2004) Echolocation signals reflect niche differentiation in five sympatric congeneric bat species. Nature 429:657–661

    Article  PubMed  CAS  Google Scholar 

  • Steinbach MJ, Money KE (1973) Eye-movements of the owl. Vision Res 13:889–891

    Article  PubMed  CAS  Google Scholar 

  • Takahashi TT (2010) How the owl tracks its prey—II. J Exp Biol 213:3399–3408

    Article  PubMed  Google Scholar 

  • Thibos LN, Cheng X, Phillips JR, Collins A (2002) Optical aberrations of chick eyes. Invest Ophth Vis Sci, E-Abstract 180

  • Tyler CW (1974) Depth perception in disparity gratings. Nature 251:140–142

    Article  PubMed  CAS  Google Scholar 

  • Uhlrich DJ, Essock EA, Lehmkuhle S (1981) Cross-species correspondence of spatial contrast sensitivity functions. Behav Brain Res 2:291–299

    Article  PubMed  CAS  Google Scholar 

  • van der Willigen RF (2011) Owls see in stereo much like humans do. J Vision 11:1–27

    Google Scholar 

  • van der Willigen RF, Frost BJ, Wagner H (1998) Stereoscopic depth perception in the owl. Neuroreport 9:1233–1237

    Article  PubMed  Google Scholar 

  • van der Willigen RF, Frost BJ, Wagner H (2002) Depth generalization from stereo to motion parallax in the owl. J Comp Physiol A 187:997–1007

    Article  Google Scholar 

  • van der Willigen RF, Frost BJ, Wagner H (2003) How owls structure visual information. Anim Cogn 6:39–55

    PubMed  Google Scholar 

  • van der Willigen RF, Harmening WM, Vossen S, Wagner H (2010) Disparity sensitivity in man and owl: psychophysical evidence for equivalent perception of shape-from-stereo. J Vision 10:1–11

    Google Scholar 

  • von Campenhausen M, Wagner H (2006) Influence of the facial ruff on the sound-receiving characteristics of the barn owl’s ears. J Comp Physiol A 192:1073–1082

    Article  Google Scholar 

  • Wagner H (1993) Sound-localization deficits induced by lesions in the barn owl’s auditory space map. J Neurosci 13:371–386

    PubMed  CAS  Google Scholar 

  • Wagner H (2004) A comparison of neural computations underlying stereo vision and sound localization. J Physiol Paris 98:135–145

    Article  PubMed  Google Scholar 

  • Wagner H, Frost B (1993) Disparity-sensitive cells in the owl have a characteristic disparity. Nature 6440:796–798

    Article  Google Scholar 

  • Wagner H, Schaeffel F (1991) Barn owls (Tyto alba) use accommodation as a distance cue. J Comp Physiol A 169:515–521

    Google Scholar 

  • Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res 39:1611–1630

    Article  PubMed  CAS  Google Scholar 

  • Wathey JC, Pettigrew JD (1989) Quantitative analysis of the retinal ganglion cell layer and optic nerve of the barn owl Tyto alba. Brain Behav Evol 5:279–292

    Article  Google Scholar 

  • Wessnitzer J, Webb B (2006) Multimodal sensory integration in insects–towards insect brain control architectures. Bioinspir Biomim 1:63–75

    Article  PubMed  Google Scholar 

  • Westheimer G (1972) Visual acuity and spatial modulation thresholds. In: Jameson D, Hurvich LV (eds) Handbook of sensory physiology. Springer, Berlin

    Google Scholar 

  • Westheimer G (2009) Visual acuity: information theory, retinal image structure and resolution thresholds. Prog Ret Eye Res 28:178–186

    Article  Google Scholar 

  • Williams D (1994) Ophthalmology. In: Ritchie BW, Harrison GJ, Harrison LR (eds) Avian medicine: principles and applications. Wingers Publishing, Lake Worth, pp 673–694

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf M. Harmening.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harmening, W.M., Wagner, H. From optics to attention: visual perception in barn owls. J Comp Physiol A 197, 1031–1042 (2011). https://doi.org/10.1007/s00359-011-0664-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-011-0664-3

Keywords

Navigation