Skip to main content
Log in

Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Anuran ears function as pressure difference receivers, and the amplitude and phase of tympanum vibrations are inherently directional, varying with sound incident angle. We quantified the nature of this directionality for Cope’s gray treefrog, Hyla chrysoscelis. We presented subjects with pure tones, advertisement calls, and frequency-modulated sweeps to examine the influence of frequency, signal level, lung inflation, and sex on ear directionality. Interaural differences in the amplitude of tympanum vibrations were 1–4 dB greater than sound pressure differences adjacent to the two tympana, while interaural differences in the phase of tympanum vibration were similar to or smaller than those in sound phase. Directionality in the amplitude and phase of tympanum vibration were highly dependent on sound frequency, and directionality in amplitude varied slightly with signal level. Directionality in the amplitude and phase of tone- and call-evoked responses did not differ between sexes. Lung inflation strongly affected tympanum directionality over a narrow frequency range that, in females, included call frequencies. This study provides a foundation for further work on the biomechanics and neural mechanisms of spatial hearing in H. chrysoscelis, and lends valuable perspective to behavioral studies on the use of spatial information by this species and other frogs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

IAD:

Interaural amplitude difference

ILD:

Interaural level difference

IPD:

Interaural phase difference

ITD:

Interaural time difference

IVAD:

Interaural vibration amplitude difference

IVPD:

Interaural vibration phase difference

IVTD:

Interaural vibration timing difference

TVA:

Tympanum vibration amplitude

TVP:

Tympanum vibration phase

References

  • Aertsen AMHJ, Vlaming MSMG, Eggermont JJ, Johannesma PIM (1986) Directional hearing in the grassfrog (Rana temporaria L.). II. Acoustics and modelling of the auditory periphery. Hear Res 21(1):17–40. doi:10.1016/0378-5955(86)90043-2

    Article  CAS  PubMed  Google Scholar 

  • Baugh AT, Ryan MJ (2010) Mate choice in response to dynamic presentation of male advertisement signals in tungara frogs. Anim Behav 79(1):145–152. doi:10.1016/j.anbehav.2009.10.015

    Article  Google Scholar 

  • Bee MA (2007a) Selective phonotaxis by male wood frogs (Rana sylvatica) to the sound of a chorus. Behav Ecol Sociobiol 61:955–966

    Article  Google Scholar 

  • Bee MA (2007b) Sound source segregation in grey treefrogs: spatial release from masking by the sound of a chorus. Anim Behav 74:549–558

    Article  Google Scholar 

  • Bee MA (2008) Finding a mate at a cocktail party: spatial release from masking improves acoustic mate recognition in grey treefrogs. Anim Behav 75:1781–1791

    Article  PubMed Central  PubMed  Google Scholar 

  • Bee MA (2010) Spectral preferences and the role of spatial coherence in simultaneous integration in gray treefrogs (Hyla chrysoscelis). J Comp Psychol 124:412–424

    Article  PubMed Central  PubMed  Google Scholar 

  • Bee MA, Riemersma KK (2008) Does common spatial origin promote the auditory grouping of temporally separated signal elements in grey treefrogs? Anim Behav 76:831–843

    Article  PubMed Central  PubMed  Google Scholar 

  • Caldwell MS, Bee MA (2014) Spatial hearing in Cope’s gray treefrog: I. Open and closed loop experiments on sound localization in the presence and absence of noise. J Comp Physiol A. doi:10.1007/s00359-014-0882-6

  • Christensen-Dalsgaard J (2005) Directional hearing in nonmammalian tetrapods. In: Popper AN, Fay RR (eds) Sound source localization. Springer handbook of auditory research, vol 25. Springer, New York, pp 67–123

  • Christensen-Dalsgaard J (2011) Vertebrate pressure-gradient receivers. Hear Res 273(1–2):37–45. doi:10.1016/j.heares.2010.08.007

    Article  PubMed  Google Scholar 

  • Christie K, Schul J, Feng AS (2010) Phonotaxis to male’s calls embedded within a chorus by female gray treefrogs, Hyla versicolor. J Comp Physiol A 196(8):569–579. doi:10.1007/s00359-010-0544-2

    Article  Google Scholar 

  • Ehret G, Tautz J, Schmitz B, Narins PM (1990) Hearing through the lungs: lung-eardrum transmission of sound in the frog Eleutherodactylus coqui. Naturwissenschaften 77(4):192–194

    Article  CAS  PubMed  Google Scholar 

  • Ehret G, Keilwerth E, Kamada T (1994) The lung-eardrum pathway in three treefrog and four dendrobatid frog species: some properties of sound transmission. J Exp Biol 195:329–343

    CAS  PubMed  Google Scholar 

  • Farris HE, Ryan MJ (2011) Relative comparisons of call parameters enable auditory grouping in frogs. Nat Commun 2:410

    Article  PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2002) The effects of spatially separated call components on phonotaxis in túngara frogs: evidence for auditory grouping. Brain Behav Evol 60(3):181–188

    Article  PubMed  Google Scholar 

  • Farris HE, Rand AS, Ryan MJ (2005) The effects of time, space and spectrum on auditory grouping in túngara frogs. J Comp Physiol A 191(12):1173–1183

    Article  CAS  Google Scholar 

  • Feng AS (1980) Directional characteristics of the acoustic receiver of the leopard frog (Rana pipiens): a study of 8th nerve auditory responses. J Acoust Soc Am 68(4):1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Capranica RR (1978) Sound localization in anurans II. Binaural interaction in superior olivary nucleus of the green tree frog (Hyla cinerea). J Neurophysiol 41(1):43–54

    CAS  PubMed  Google Scholar 

  • Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans: acoustic properties of the frog’s ear. Hear Res 5(2–3):201–216

    Article  CAS  PubMed  Google Scholar 

  • Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green treefrog (Hyla cinerea) and the barking treefrog (Hyla gratiosa). J Comp Physiol A 107(3):241–252

    Article  Google Scholar 

  • Gerhardt HC (1975) Sound pressure levels and radiation patterns of vocalizations of some North American frogs and toads. J Comp Physiol A 102(1):1–12

    Article  Google Scholar 

  • Gerhardt HC (1995) Phonotaxis in female frogs and toads: execution and design of experiments. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in comparative psychoacoustics, vol 28. Birkhäuser Verlag, Basel, pp 209–220

  • Gerhardt HC, Bee MA (2007) Recognition and localization of acoustic signals. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians, vol 28. Springer handbook of auditory researchSpringer, New York, pp 113–146

  • Gerhardt HC, Huber F (eds) (2002) Acoustic communication in insects and anurans: common problems and diverse solutions. Chicago University Press, Chicago

    Google Scholar 

  • Gerhardt HC, Klump GM (1988) Phonotactic responses and selectivity of barking treefrogs (Hyla gratiosa) to chorus sounds. J Comp Physiol A 163(6):795–802

    Article  Google Scholar 

  • Gerhardt HC, Rheinlaender J (1980) Accuracy of sound localization in a miniature dendrobatid frog. Naturwissenschaften 67(7):362–363

    Article  Google Scholar 

  • Gerhardt HC, Rheinlaender J (1982) Localization of an elevated sound source by the green tree frog. Science 217(4560):663–664

    Article  Google Scholar 

  • Greenhouse SW, Geisser S (1959) On methods in the analysis of profile data. Psychometrika 24(2):95–112

    Article  Google Scholar 

  • Hillery CM (1984) Seasonality of two midbrain auditory responses in the treefrog, Hyla chrysoscelis. Copeia 1984(4):844–852

    Article  Google Scholar 

  • Ho CCK, Narins PM (2006) Directionality of the pressure-difference receiver ears in the northern leopard frog, Rana pipiens pipiens. J Comp Physiol A 192(4):417–429

    Article  Google Scholar 

  • Jørgensen MB (1991) Comparative studies of the biophysics of directional hearing in anurans. J Comp Physiol A 169(5):591–598

    Article  Google Scholar 

  • Jørgensen MB, Christensen-Dalsgaard J (1997a) Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. I. Spike rate responses. J Comp Physiol A 180(5):493–502. doi:10.1007/s003590050066

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Christensen-Dalsgaard J (1997b) Directionality of auditory nerve fiber responses to pure tone stimuli in the grassfrog, Rana temporaria. II. Spike timing. J Comp Physiol A 180(5):503–511. doi:10.1007/s003590050066

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Gerhardt HC (1991) Directional hearing in the gray tree frog Hyla versicolor: eardrum vibrations and phonotaxis. J Comp Physiol A 169(2):177–183

    Article  PubMed  Google Scholar 

  • Jørgensen MB, Schmitz B, Christensen-Dalsgaard J (1991) Biophysics of directional hearing in the frog Eleutherodactylus coqui. J Comp Physiol A 168(2):223–232

    Article  Google Scholar 

  • Klump GM, Gerhardt HC (1989) Sound localization in the barking treefrog. Naturwissenschaften 76(1):35–37

    Article  CAS  PubMed  Google Scholar 

  • Klump GM, Benedix JH, Gerhardt HC, Narins PM (2004) AM representation in green treefrog auditory nerve fibers: neuroethological implications for pattern recognition and sound localization. J Comp Physiol A 190(12):1011–1021

    Article  CAS  Google Scholar 

  • Lindquist ED, Hetherington TE, Volman SF (1998) Biomechanical and neurophysiological studies on audition in eared and earless harlequin frogs (Atelopus). J Comp Physiol A 183(2):265–271. doi:10.1007/s003590050254

    Article  CAS  PubMed  Google Scholar 

  • Mason MJ (2007) Pathways for sound transmission to the inner ear in amphibians. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer handbook of auditory research, vol 28. Springer, New York, pp 147–183

  • Melssen WJ, Epping WJM (1992) Selectivity for temporal characteristics of sound and interaural time difference of auditory midbrain neurons in the grassfrog—a system theoretical approach. Hear Res 60(2):178–198. doi:10.1016/0378-5955(92)90020-n

    Article  CAS  PubMed  Google Scholar 

  • Michelsen A, Jørgensen MB, Christensen-Dalsgaard J, Capranica RR (1986) Directional hearing of awake, unrestrained treefrogs. Naturwissenschaften 73(11):682–683. doi:10.1007/bf00366697

    Article  CAS  PubMed  Google Scholar 

  • Narins PM, Ehret G, Tautz J (1988) Accessory pathway for sound transfer in a neotropical frog. Proc Natl Acad Sci USA 85(5):1508–1512

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narins PM, Grabul DS, Soma KK, Gaucher P, Hödl W (2005) Cross-modal integration in a dart-poison frog. Proc Natl Acad Sci USA 102(7):2425–2429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nityananda V, Bee MA (2012) Spatial release from masking in a free-field source identification task by gray treefrogs. Hear Res 285:86–97

    Article  PubMed Central  PubMed  Google Scholar 

  • Palmer AR, Pinder AC (1984) The directionality of the frog ear described by a mechanical model. J Theor Biol 110(2):205–215. doi:10.1016/s0022-5193(84)80053-3

    Article  CAS  PubMed  Google Scholar 

  • Penna M, Gormaz JP, Narins PM (2009) When signal meets noise: immunity of the frog ear to interference. Naturwissenschaften 96(7):835–843. doi:10.1007/s00114-009-0542-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinder AC, Palmer AR (1983) Mechanical properties of the frog ear: vibration measurements under free- and closed-field acoustic conditions. Proc R Soc Lond Ser B Biol Sci 219(1217):371–396. doi:10.1098/rspb.1983.0079

    Article  CAS  Google Scholar 

  • Ptacek MB, Gerhardt HC, Sage RD (1994) Speciation by polyploidy in treefrogs: multiple origins of the tetraploid, Hyla versicolor. Evolution 48(3):898–908

    Article  Google Scholar 

  • Rheinlaender J, Gerhardt HC, Yager DD, Capranica RR (1979) Accuracy of phonotaxis by the green treefrog (Hyla cinerea). J Comp Physiol A 133(4):247–255

    Article  Google Scholar 

  • Rheinlaender J, Walkowiak W, Gerhardt HC (1981) Directional hearing in the green treefrog: a variable mechanism? Naturwissenschaften 68(8):430–431

    Article  Google Scholar 

  • Robertson JGM (1986) Male territoriality, fighting and assessment of fighting ability in the Australian frog Uperoleia rugosa. Anim Behav 34:763–772

    Article  Google Scholar 

  • Schmitz B, White TD, Narins PM (1992) Directionality of phase locking in auditory nerve fibers of the leopard frog Rana pipiens pipiens. J Comp Physiol A 170(5):589–604

    CAS  PubMed  Google Scholar 

  • Schrode K, Ward JL, Vélez A, Bee MA (2012) Female preferences for spectral call properties in the western genetic lineage of Cope’s gray treefrog (Hyla chrysoscelis). Behav Ecol Sociobiol 66:1595–1606

    Article  PubMed Central  PubMed  Google Scholar 

  • Schrode KM, Buerkle NP, Brittan-Powell EF, Bee MA (2014) Auditory brainstem responses in Cope’s gray treefrog (Hyla chrysoscelis): Effects of frequency, level, sex and size. J Comp Physiol A. doi:10.1007/s00359-014-0880-8

  • Schwartz JJ, Gerhardt HC (1989) Spatially mediated release from auditory masking in an anuran amphibian. J Comp Physiol A 166(1):37–41

    Article  Google Scholar 

  • Schwartz JJ, Gerhardt HC (1995) Directionality of the auditory system and call pattern recognition during acoustic interference in the gray treefrog, Hyla versicolor. Audit Neurosci 1:195–206

    Google Scholar 

  • Shen JX, Feng AS, Xu ZM, Yu ZL, Arch VS, Yu XJ, Narins PM (2008) Ultrasonic frogs show hyperacute phonotaxis to female courtship calls. Nature 453(7197):914–916

    Article  CAS  PubMed  Google Scholar 

  • Taylor RC, Klein BA, Stein J, Ryan MJ (2011) Multimodal signal variation in space and time: how important is matching a signal with its signaler? J Exp Biol 214(5):815–820. doi:10.1242/jeb.043638

    Article  PubMed  Google Scholar 

  • Ursprung E, Ringler M, Hödl W (2009) Phonotactic approach pattern in the neotropical frog Allobates femoralis: a spatial and temporal analysis. Behaviour 146:153–170. doi:10.1163/156853909x410711

    Article  Google Scholar 

  • Vlaming MSMG, Aertsen AMHJ, Epping WJM (1984) Directional hearing in the grass frog (Rana temporaria L.): I. Mechanical vibrations of tympanic membrane. Hear Res 14(2):191–201. doi:10.1016/0378-5955(86)90043-2

    Article  CAS  PubMed  Google Scholar 

  • Wagner WE (1989) Fighting, assessment, and frequency alteration in Blanchard cricket frog. Behav Ecol Sociobiol 25(6):429–436

    Article  Google Scholar 

  • Wang JX, Narins PM (1996) Directional masking of phase locking in the amphibian auditory nerve. J Acoust Soc Am 99(3):1611–1620

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Ludwig TA, Narins PM (1996) Spatial and spectral dependence of the auditory periphery in the northern leopard frog. J Comp Physiol A 178(2):159–172

    Article  CAS  PubMed  Google Scholar 

  • Ward JL, Buerkle NP, Bee MA (2013a) Spatial release from masking improves sound pattern discrimination along a biologically relevant pulse-rate continuum in gray treefrogs. Hear Res 306:63–75

    Article  PubMed  Google Scholar 

  • Ward JL, Love EK, Vélez A, Buerkle NP, O’Bryan LR, Bee MA (2013b) Multitasking males and multiplicative females: dynamic signalling and receiver preferences in Cope’s grey treefrog (Hyla chrysoscelis). Anim Behav 86:231–243

    Article  Google Scholar 

  • Wells KD (1978) Territoriality in the green frog (Rana clamitans): vocalizations and agonistic behavior. Anim Behav 26:1051–1063

    Article  Google Scholar 

  • White TD, Schmitz B, Narins PM (1992) Directional dependence of auditory sensitivity and frequency selectivity in the leopard frog. J Acoust Soc Am 92(4):1953–1961

    Article  CAS  PubMed  Google Scholar 

  • Wilczynski W, Brenowitz EA (1988) Acoustic cues mediate inter-male spacing in a neotropical frog. Anim Behav 36:1054–1063

    Article  Google Scholar 

  • Wilczynski W, Resler C, Capranica RR (1987) Tympanic and extratympanic sound transmission in the leopard frog. J Comp Physiol A 161(5):659–669. doi:10.1007/bf00605007

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sandra Tekmen and Jessica Ward for logistical support and for assistance in the lab, Marcos Gridi-Papp for consultation on the development of our experimental methodology, and two anonymous reviewers for their helpful comments on an earlier version of this manuscript. All procedures followed the Guide for the Care and Use of Laboratory Animals and were approved by the University of Minnesota’s Institutional Animal Care and Use Committee (protocol #1103A97192) or the Danish National Animal Experimentation board (protocol 2009/561-1645). This work was supported by a grant from the National Institute on Deafness and Other Communication Disorders (R01 DC009582). Katrina Schrode was supported by a National Institutes of Health Pre-doctoral Training Grant (NIH T32 NS048944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Caldwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldwell, M.S., Lee, N., Schrode, K.M. et al. Spatial hearing in Cope’s gray treefrog: II. Frequency-dependent directionality in the amplitude and phase of tympanum vibrations. J Comp Physiol A 200, 285–304 (2014). https://doi.org/10.1007/s00359-014-0883-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-014-0883-5

Keywords

Navigation