Skip to main content
Log in

Motion study of the hip joint in extreme postures

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Many causes can be at the origin of hip osteoarthritis (e.g., cam/pincer impingements), but the exact pathogenesis for idiopathic osteoarthritis has not yet been clearly delineated. The aim of the present work is to analyze the consequences of repetitive extreme hip motion on the labrum cartilage. Our hypothesis is that extreme movements can induce excessive labral deformations and lead to early arthritis. To verify this hypothesis, an optical motion capture system is used to estimate the kinematics of patient-specific hip joint, while soft tissue artifacts are reduced with an effective correction method. Subsequently, a physical simulation system is used during motion to compute accurate labral deformations and to assess the global pressure of the labrum, as well as any local pressure excess that may be physiologically damageable. Results show that peak contact pressures occur at extreme hip flexion/abduction and that the pressure distribution corresponds with radiologically observed damage zones in the labrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmet, C., Vahdet, U., Recep, K.: Three-dimensional anatomic finite element modelling of hemi-arthroplasty of human hip joint. Trends Biomater. Artif. Organs 21, 63–72 (2007)

    Google Scholar 

  2. Alexander, E., Andriacchi, T.: Correcting for deformation in skin-based marker systems. J. Biomech. 34, 355–361 (2001)

    Article  Google Scholar 

  3. Assassi, L., Guillard, G., Gilles, B., Magnenat-Thalmann, N.: Volumetric meshes based on medial representation for medical applications. In: Proc. Comput. Assist. Orthop. Surg. (CAOS’07), pp. 259–262 (2007)

  4. Bathe, K.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs (1995)

    Google Scholar 

  5. Benoit, D., Ramsey, D., Lamontagne, M., Xu, L., Wretenberg, P., Renstroem, P.: Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24(2), 152–164 (2006)

    Article  Google Scholar 

  6. Binningsley, D.: Tear of the acetabular labrum in an elite athlete. Br. J. Sports Med. 37, 84–88 (2003)

    Article  Google Scholar 

  7. Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  8. Brown, T.: In vitro contact stress distributions in the natural human hip. J. Biomech. 16, 373–384 (1983)

    Article  Google Scholar 

  9. Cappello, A., Stagni, R., Fantozzi, S., Leardini, A.: Soft tissue artifact compensation in knee kinematics by double anatomical landmark calibration: Performance of a novel method during selected motor tasks. IEEE Trans. Biomed. Eng. 52(2), 992–998 (2005)

    Article  Google Scholar 

  10. Cappozzo, A., Catani, F., Croce, U.D., Leardini, A.: Position and orientation of bones during movement: anatomical frame definition and determination. Clin. Biomech. 10, 171–178 (1995)

    Article  Google Scholar 

  11. Cappozzo, A., Catani, F., Leardini, A., Benedetti, M., Croce, U.D.: Position and orientation in space of bones during movement: experimental artefacts. Clin. Biomech. 11(2), 90–100 (1996)

    Article  Google Scholar 

  12. Cereatti, A., Croce, U.D., Cappozzo, A.: Reconstruction of skeletal movement using skin markers: comparative assessment of bone pose estimators. J. NeuroEng. Rehabil. 3(7) (2006)

  13. Chegini, S., Beck, M., Ferguson, S.: The effects of impingement and dysplasia on stress distributions in the hip joint during sitting and walking: a finite element analysis. J. Orthop. Res. 27(2), 195–201 (2008)

    Article  Google Scholar 

  14. Chegini, S., Beck, M., Fergusson, S.: Femoro acetabular impingement as a possible initiator of cartilage degeneration. In: 7th Int. Symp. on Comput. Meth. in Biomech. and Biomed. Eng. (CMBBE2006), pp. 705–710 (2006)

  15. Cotin, S., Delingette, H., Ayache, N.: Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph. 5(1), 62–73 (1999)

    Article  Google Scholar 

  16. Croce, U.D., Leardini, A., Chiari, L., Cappozzo, A.: Human movement analysis using stereophotogrammetry. Part 4: Assessment of anatomical landmark misplacement and its effects on joint kinematics. Gait Posture 21, 226–237 (2005)

    Article  Google Scholar 

  17. Dy, C., Thompson, M., Crawford, M., Alexander, J., McCarthy, J., Noble, P.: Tensile strain in the anterior part of the acetabular labrum during provocative maneuvering of the normal hip. J. Bone Joint Surg. Am. 90, 1464–1472 (2008)

    Article  Google Scholar 

  18. Ferguson, S., Bryant, J., Ito, K.: The material properties of the bovine acetabular labrum. J. Orthop. Res. 19, 887–896 (2001)

    Article  Google Scholar 

  19. Ganz, R., Parvizi, J., Beck, M., Leunig, M., Notzli, H., Siebenrock, K.: Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin. Orthop. Relat. Res. 417, 112–120 (2003)

    Google Scholar 

  20. Garling, E., Kaptein, B., Mertens, B., Barendregt, W., Veeger, H., Nelissen, R., Valstar, E.: Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. J. Biomech. 40, 18–24 (2007)

    Article  Google Scholar 

  21. Gilles, B.: Anatomical and kinematical modelling of the musculoskeletal system from MRI. Ph.D. thesis, Université de Genève (2007)

  22. Gilles, B., Moccozet, L., Magnenat-Thalmann, N.: Anatomical modelling of the musculoskeletal system from MRI. In: Med. Image Comput. Comp. Assist. Intervention (MICCAI’06), pp. 289–296 (2006)

  23. Gilles, B., Perrin, R., Magnenat-Thalmann, N., Vallée, J.P.: Bones motion analysis from dynamic MRI: acquisition and tracking. Acad. Radiol. 12, 2385–2392 (2005)

    Article  Google Scholar 

  24. Gottschalk, S., Lin, M., Manocha, D.: Obbtree: A hierarchical structure for rapid interference detection. In: SIGGRAPH’96, pp. 171–180 (1996)

  25. Hauth, M., Etzmuss, O.: A high performance solver for the animation of deformable objects using advanced numerical methods. In: Eurographics’01, pp. 137–151 (2001)

  26. Hauth, M., Gross, J., Strasser, W.: Interactive physically-based solid dynamics. In: Eurographics Symp. Comput. Animation, pp. 17–27 (2003)

  27. Hauth, M., Strasser, W.: Corotational simulation of deformable solids. In: WSCG’04, pp. 137–145 (2004)

  28. Hirota, G., Fisher, S., State, A., Lee, C., Fuchs, H.: An implicit finite element method for elastic solids in contact. In: Comput. Animation, pp. 136–146 (2001)

  29. Hodge, W., Carlson, K., Fijan, R., Burgess, R., Riley, P., Harris, W., Mann, R.: Contact pressures from an instrumented hip endoprostheses. J. Bone Joint Surg. Am. 71A, 1378–1386 (1989)

    Google Scholar 

  30. Holden, J., Orsini, J., Siegel, K., Kepple, T., Gerber, L., Stanhope, S.: Surface movement errors in shank kinematics and knee kinetics during gait. Gait Posture 5, 217–227 (1997)

    Article  Google Scholar 

  31. Kepple, T., Arnold, A., Stanhope, S., Siegel, K.: Assessment of a method to estimate muscle attachments from surface landmarks: a 3d computer graphics approach. J. Biomech. 27, 365–371 (1994)

    Article  Google Scholar 

  32. Kumagai, M., Kim, Y., Inoue, N., Genda, E., Liong, K.H.B., Koo, T., Chao, E.: 3-D dynamic hip contact pressure distribution in daily activities. In: Summer Bioeng. Conf., pp. 53–54 (2003)

  33. Lafortune, M., Cavanagh, P., Sommer, H., Kalenak, A.: Three-dimensional kinematics of the human knee during walking. J. Biomech. 25(4), 347–357 (1992)

    Article  Google Scholar 

  34. Lawrence, C., Tits, A.: A computationally efficient feasible sequential quadratic programming algorithm. SIAM J. Optim. 11(4), 1092–1118 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Lewis, C., Sahrmann, S.: Acetabular labral tears. Phys. Ther. 86, 110–121 (2006)

    Google Scholar 

  36. Lu, T., O’Connor, J.: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32, 129–134 (1999)

    Article  Google Scholar 

  37. Lucchetti, L., Cappozzo, A., Cappello, A., Croce, U.D.: Skin movement artefact assessment and compensation in the estimation of knee joint kinematics. J. Biomech. 31(11), 977–984 (1998)

    Article  Google Scholar 

  38. Maciel, A., Sarni, S., Boulic, R., Thalmann, D.: Stress distribution visualization on pre- and post-operative virtual hip joint. In: Proc. Comp. Assist Orthop. Surg. (CAOS’05), pp. 298–301 (2005)

  39. Manal, K., McClay, I., Richards, J., Galinat, B., Stanhope, S.: Knee moment profiles during walking: errors due to soft tissue movement of the shank and the influence of the reference coordinate system. Gait Posture 15, 10–17 (2002)

    Article  Google Scholar 

  40. Mason, J.: Acetabular labral tears in the athlete. Clin. Sports Med. 20, 779–790 (2001)

    Article  Google Scholar 

  41. Mavcic, B., Pompe, B., Antolic, V., Daniel, M., Iglic, A., Kralj-Iglic, V.: Mathematical estimation of stress distribution in normal and dysplastic human hips. J. Orthop. Res. 20, 1025–1030 (2002)

    Article  Google Scholar 

  42. Nesme, M., Payan, Y., Faure, F.: Efficient, physically plausible finite elements. In: Eurographics’05, pp. 77–80 (2005)

  43. Pfirrmann, C.W.A., Mengiardi, B., Dora, C., Kalberer, F., Zanetti, M., Hodler, J.: Cam and pincer femoroacetabular impingement: Characteristic mr arthrographic findings in 50 patients. J. Radiol. 240(3), 778–785 (2006)

    Google Scholar 

  44. Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Model. 65(5), 305–321 (2003)

    Article  MATH  Google Scholar 

  45. Reynolds, D., Lucas, J., Klaue, K.: Retroversion of the acetabulum, a cause of hip pain. J. Bone Joint Surg. 81(2), 281–288 (1999)

    Article  Google Scholar 

  46. Russell, M., Shivanna, K., Grosland, N., Pedersen, D.: Cartilage contact pressure elevations in dysplastic hips: a chronic overload model. J. Orthop. Surg. Res. 1(6), 169–177 (2006)

    Google Scholar 

  47. Schneider, P., Eberly, D.: Geometric Tools for Computer Graphics. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling (2003)

  48. Seo, H., Magnenat-Thalmann, N.: An automatic modeling of human bodies from sizing parameters. In: ACM SIGGRAPH 2003 Symp. on Interact. 3D Graph, pp. 19–26 (2003)

  49. Söderkvist, I., Biomech, P.W.J.: Determining the movements of the skeleton using well-configured markers. J. Biomech. 12, 1473–1477 (1993)

    Article  Google Scholar 

  50. Stagni, R., Fantozzi, S., Cappello, A., Leardini, A.: Quantification of soft tissue artifact in motion analysis by combining 3d fluoroscopy and stereophotogrammetry: a study on two subjects. Clin. Biomech. 20, 320–329 (2005)

    Article  Google Scholar 

  51. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D’Lima, D., Cristofolini, L., Witte, H., Schmid, O., Strokes, I.: ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: Ankle, hip and spine. J. Biomech. 35(4), 543–548 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caecilia Charbonnier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charbonnier, C., Assassi, L., Volino, P. et al. Motion study of the hip joint in extreme postures. Vis Comput 25, 873–882 (2009). https://doi.org/10.1007/s00371-009-0317-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-009-0317-5

Keywords

Navigation