Skip to main content

Advertisement

Log in

Different angiogenesis effect of mini-TyrRS/mini-TrpRS by systemic administration of modified siRNAs in rats with acute myocardial infarction

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

We aimed to clarify the different angiogenesis effects of mini-tyrosyl-tRNA synthetase (TyrRS)/minitryptophanyl-tRNA synthetase (TrpRS) in rodent primates with acute myocardial infarction, by delivering small interfering RNAs (siRNAs) systemically in a liposomal formulation. Left coronary artery ligation was used to establish the model of acute myocardial infarction in rats; mini-TyrRS/mini-TrpRS-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP), and administered by intravenous injection to rats. Rats were divided into four experiment groups: sham operated group (no left anterior descending artery [LAD] occlusion); negative control group (LAD occlusion + saline injection); mock transfection group (LAD occlusion + mock transfected injection); experiment group (LAD occlusion + mini-TyrRS/mini-TrpRS-specific siRNAs injection). Silencing efficiency was assayed by Western blotting. To determine whether mini-TyrRS/mini-TrpRS affected the angiogenesis activity of rats with myocardial infarction, we measured the myocardial infarction size by TTC staining, and the capillary density using immunohistochemistry staining, to investigate the expression of factor VIII. The myocardial infarction size and the capillary density of mini-TyrRS-siRNA group were respectively 18.89% and 8.64/0.1 mm2 1 month after ligation, while in the mini-TrpRS-siRNA group these values were 7.33% and 17.32/0.1 mm2, significantly different compared with the mock transfection group (14.19%; 13.56/0.1 mm2) and negative control group (14.28%; 13.89/0.1 mm2), P < 0.05. There were no significant changes between the mock transfection group and the negative control group, P > 0.05. These results indicated that angiogenesis is either stimulated by mini-TyrRS or inhibited by mini-TrpRS in rat models with acute myocardial infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gach O, Louis O, Chapelle JP, Vanbelle S, Pierard LA, Legrand V (2009) Baseline inflammation is not predictive of periprocedural troponin elevation after elective percutaneous coronary intervention. Heart Vessels 24:267–270

    Article  PubMed  Google Scholar 

  2. Nemes A, Forster T, Geleijnse M, I.I. Soliman O, ten Cate FJ, Csanády M (2008) Prognostic value of coronary flow reserve and aortic distensibility indices in patients with suspected coronary artery disease. Heart Vessels 23:167–173

    Article  PubMed  Google Scholar 

  3. Laham RJ, Sellke FW, Edelman JD, Pearlman JD, Ware A, Brown DL, Gold JP, Simons M (1999) Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery: results of a phase I randomized, double-blind, placebocontrolled trial. Circulation 100:1865–1871

    PubMed  CAS  Google Scholar 

  4. Biselli PM, Guerzoni AR, de Godoy MF, Pavarino-Bertelli EC, Goloni-Bertollo EM (2008) Vascular endothelial growth factor genetic variability and coronary artery disease in Brazilian population. Heart Vessels 23:371–375

    Article  PubMed  Google Scholar 

  5. Rosengart TK, Lee LY, Patel SR, Sanborn TA, Parikh M, Bergman GW, Hachamovitch R, Szulc M, Kligfield PD, Okin PM, Hahn RT, Devereux RB, Post MR, Hackett NR, Foster T, Grasso TM, Lesser ML, Isom OW, Crystal RG (1999) Phase I assessment of direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA to individuals with clinically significant severe coronary artery disease. Circulation 100:468–474

    PubMed  CAS  Google Scholar 

  6. Vale PR, Losordo DW, Milliken CE, McDonald MC, Gravelin LM, Curry CM, Esakof DD, Maysky M, Symes JF, Isner JM (2001) Randomized, singe-blind, placebo-controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial ischemia. Circulation 103:2138–2143

    PubMed  CAS  Google Scholar 

  7. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadoro J, Kloner RA, Braunwald E (1979) Myocardial infarct size and ventricular function in rats. Circulation Res 44:503–512

    PubMed  CAS  Google Scholar 

  8. Michael LH, Entman ML, Hartley CJ, Youker KA, Zhu J, Hall SR, Hawkins HK, Berens K, Ballantyne CM (1995) Myocardial ischemia and reperfusion: a murine model. Am J Physiol 269:2147–2154

    Google Scholar 

  9. Horii M, Uemura S, Uemura M, Matsumoto M, Ishizashi H, Imagawa K, Iwama H, Takeda Y, Kawata H, Nakajima T, Fujimura Y, Saito Y (2008) Acute myocardial infarction as a systemic prothrombotic condition evidenced by increased von Willebrand factor protein over ADAMTS13 activity in coronary and systemic circulation. Heart Vessels 23:301–307

    Article  PubMed  Google Scholar 

  10. Lutgens E, Daemen MJAP, de Muinck ED, Debet J, Leenders P, Smits JFM (1999) Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovascular Res 41:586–593

    Article  CAS  Google Scholar 

  11. Michael LH, Ballantyne CM, Zachariah JP, Gould KE, Pocius JS, Taffet GE, Hartley CJ, Pham TT, Daniel SL, Funk E, Entman ML (1999) Myocardial infarction and remodeling in mice. Effect of reperfusion. Am J Physiol 277:660–668

    Google Scholar 

  12. Scherrer-Crosbie M, Steudel W, Ullrich R, Hunziker PR, Liel-Cohen N, Newell J, Zaroff J, Zapol WM, Picard MH (1999) Echocardiographic determination of risk area size in a murine model of myocardial ischemia. Am J Physiol 277:986–992

    Google Scholar 

  13. Guo Y, Wu WJ, Qin Y, Tang XL, Yang Z, Bolli R (1998) Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol 275:1375–1387

    Google Scholar 

  14. Martinis SA, Plateau P, Cavarelli J, Florentz C (1999) Aminoacyl tRNA synthetases: a family of expanding functions. EMBO J 18:4591–4596

    Article  PubMed  CAS  Google Scholar 

  15. Wakasugi K, Schimmel P (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284:147–151

    Article  PubMed  CAS  Google Scholar 

  16. Wakasugi K, Schimmel P (1999) Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem 274:23155–23159

    Article  PubMed  CAS  Google Scholar 

  17. Wakasugi K, Slike BM, Hood J, Ewalt KL, Cheresh DA, Schimmel P (2002) Introduction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 277:20124–20126

    Article  PubMed  CAS  Google Scholar 

  18. Wakasugi K, Slike BM, Hood J, Otani A, Ewalt KL, Friedlander M, Cheresh DA, Schimmel PA (2002) human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci USA 99:173–177

    Article  PubMed  CAS  Google Scholar 

  19. Otani A, Slike BM, Dorrell M, Hood J, Kinder K, Ewalt KL, Cheresh D, Schimmel P, Friedlander M (2002) A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA 99:178–183

    Article  PubMed  CAS  Google Scholar 

  20. Ewalt KL, Schimmel P (2002) Activation of angiogenic signaling pathways by two human tRNA synthetases. Biochemistry 41:13344–13349

    Article  PubMed  CAS  Google Scholar 

  21. Ibba M (2000) Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650

    Article  PubMed  CAS  Google Scholar 

  22. Ribas de Pouplana L, Frugier M, Quinn CL, Schimmel P (1996) Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria. Proc Natl Acad Sci USA 93:166–170

    Article  PubMed  CAS  Google Scholar 

  23. Lee SW, Cho BH, Park SG, Kim S (2004) Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 117:3725–3734

    Article  PubMed  CAS  Google Scholar 

  24. Fleckner J, Martensen PM, Tolstrup AB, Kjeldgaard NO, Justesen J (1995) Differential regulation of the human interferon inducible tryptophanyl-tRNA synthetase by various cytokines in cell lines. Cytokine 7:70–77

    Article  PubMed  CAS  Google Scholar 

  25. Kise Y, Lee SW, Park SG, Fukai S, Sengoku T, Ishii R, Yokoyama S, Kim S, Nureki O (2004) A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nat Struct Mol Biol 11:149–156

    Article  PubMed  CAS  Google Scholar 

  26. Jorgensen R, Sogaard TM, Rossing AB, Martensen PM, Justesen J (2000) Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 275:16820–16826

    Article  PubMed  CAS  Google Scholar 

  27. Novina CD, Sharp PA (2004) The RNAi revolution. Nature 430:161–164

    Article  PubMed  CAS  Google Scholar 

  28. Shankar P, Manjunath N, Lieberman J (2005) The prospect of silencing disease using RNA interference. J Am Med Assoc 293:1367–1373

    Article  CAS  Google Scholar 

  29. Thakker DR, Natt F, Hüsken D, Maier R, Müller M, van der Putten H, Hoyer D, Cryan JF (2004) Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc Natl Acad Sci USA 101:17270–17275

    Article  PubMed  CAS  Google Scholar 

  30. Bitko V, Musiyenko A, Shulyayeva O, Barik S (2005) Inhibition of respiratory viruses by nasally administered siRNA. Nat Med 11:50–55

    Article  PubMed  CAS  Google Scholar 

  31. Palliser, D. Chowdhury D, Wang QY, Lee SJ, Bronson RT, Knipe DM, Lieberman J (2006) An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439:89–94

    Article  PubMed  CAS  Google Scholar 

  32. Soutschek, J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Röhl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  33. Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nature Biotechnol 23:709–717

    Article  CAS  Google Scholar 

  34. Morrissey DV, Lockridge JA, Shaw L, Blanchard K, Jensen K, Breen W, Hartsough K, Machemer L, Radka S, Jadhav V, Vaish N, Zinnen S, Vargeese C, Bowman K, Shaffer CS, Jeffs LB, Judge A, MacLachlan I, Polisky B (2005) Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol 23:1002–1007

    Article  CAS  Google Scholar 

  35. Zeng R, Chen YC, Zeng Z, Liu R, Qiang O, Jiang XF, Liu XX, Li X, Wang HY (2008) Small interfering RNA knockdown of mini-TyrRS and mini-TrpRS effects angiogenesis in human umbilical vein endothelial cells in hypoxic culture. Cytotechnology 56:219–231

    Article  PubMed  CAS  Google Scholar 

  36. Schaper W, De Bradbander M, Lewi P (1970) DNA synthesis and mitoses in coronary collateral vessels of the dog. Circulation Res 28:671–679

    Google Scholar 

  37. Shou M, Thirumurti V, Sharnini Rajanayagam MA, Lazarous DF, Hodge E, Stiber JA, Pettiford M, Elliot E, Shah SM, Unger EF (1997) Effect of basic fibroblast growth factor on myocardial angiogenesis in dogs with mature collateral vessels. J Am Coll Cardiol 29:1102–1106

    Article  PubMed  CAS  Google Scholar 

  38. Mannion JD, Blood V, Bailey W, Bauer TL, Magno MG, Dimeo F, Epple A, Spinale FG (1996) The effect of basic fibroblast growth factor on the blood flow and morphologic features of a latissimus dorsi cardiomyoplasty. J Thoracic Cardiovascular Surg 111:19–28

    Article  CAS  Google Scholar 

  39. Ware JA, Simons M (1999) Angiogenesis and cardiovascular disease. Oxford University Press, Oxford, pp 347–399

    Google Scholar 

  40. Giordano FJ, Ping P, McKirnan D, Nozaki S, DeMaria AN, Dillmann WH, Mathieu CO, Hammond K (1996) Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 2:534–539

    Article  PubMed  CAS  Google Scholar 

  41. Hariawala MD, Horowitz JR, Esakof D, Sheriff DD, Walter DH, Keyt B, Isner J, Symes JF (1996) VEGF improves myocardial blood flow but produces EDRF-Mediated hypotension in porcine hearts. J Surg Res 63:77–82

    Article  PubMed  CAS  Google Scholar 

  42. Lopez JJ, Laham RJ, Stamler A, Pearlman JD, Bunting S, Kaplan A, Carrozza JP, Sellke FW (1998) VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res 40:272–281

    Article  PubMed  CAS  Google Scholar 

  43. Mack CA, Patel SR, Schwarz EA, Zanzonico P, Hahn RT, Ilercil A, Devereux RB, Goldsmith SJ, Christian TF, Sanborn TA, Kovesdi I, Hackett N, Isom OW, Crystal RG, Rosengart TK (1998) Biologic bypass with the use of adenovirus-mediated gene transfer of the complementary deoxyribonucleic acid for vascular endothelial growth factor 121 improves myocardial perfusion and function in the ischemic porcine heart. J Thorac Cardiovasc Surg 115:168–177

    Article  PubMed  CAS  Google Scholar 

  44. Tio RA, Tkebuchava T, Scheuermann TH, Lebherz C, Magner M, Kearny M, Esakof DD, Isner JM, Symes JF (1999) Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium. Hum Gene Ther 10:2953–2960

    Article  PubMed  CAS  Google Scholar 

  45. Patel SR, Lee LY, Mack CA, Polce DR, El-Sawy T, Hackett NR, Ilercil A, Jones EC, Hahn RT, Isom OW, Rosengart TK, Crystal RG (1999) Safety of direct myocardial administration of an adenovirus vector encoding vascular endothelial growth factor 121. Hum Gene Ther 10:1331–1348

    Article  PubMed  CAS  Google Scholar 

  46. Laham RJ, Rezaee M, Post M, Novicki D, Sellke FW, Pearlman JD, Simons M, Hung D (2000) Intrapericardial delivery of fibroblast growth factor-2 induces neovascularization in a porcine model of chronic myocardial ischaemia. J Pharmacol Exp Ther 292:795–802

    PubMed  CAS  Google Scholar 

  47. Sato K, Laham RJ, Pearlman JD, Novicki D, Sellke FW, Simons M, Post MJ (2000) Efficacy of intracoronary versus intravenous FGF-2 in a pig model of chronic myocardial ischemia. Ann Thorac Surg 70:2113–2118

    Article  PubMed  CAS  Google Scholar 

  48. Sato K, Wu T, Laham RJ, Johnson RB, Douglas P, Li J, Sellke FW, Bunting S, Simons M, Post MJ (2001) Efficacy of intracoronary or intravenous VEGF in a pig model of chronic myocardial ischemia. J Am Coll Cardiol 37:616–623

    Article  PubMed  CAS  Google Scholar 

  49. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in Drosophila melanogaster embryo lysate. Nature 411:494–498

    Article  PubMed  CAS  Google Scholar 

  50. Sui G, Soohoo C, Affar EB, Gay F, Shi YJ, Forrester WC, Shi YA (2002) DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99:5515–5520

    Article  PubMed  CAS  Google Scholar 

  51. Lee NS, Dohjima T, Bauer G, Li H, Li MJ, Ehsani A, Salvaterra P, Rossi J (2001) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 19:500–505

    Google Scholar 

  52. Paul CP, Good PD, Winer I (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508

    Article  PubMed  CAS  Google Scholar 

  53. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553

    Article  PubMed  CAS  Google Scholar 

  54. Paddison PJ, Caudy AA, Berstein E, Hannon GJ, Conklin DS (2002) Short hairpin RNAs induces sequences-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  PubMed  CAS  Google Scholar 

  55. Byrom M, Pallotta V, Brown D, Ford L (2002) Visualizing SiRNA in mammalian cells: fluorescence analysis of the RNAi effect. Ambion Technotes 93:6–8

    Google Scholar 

  56. Yeh CH, Peng HC, Huang TF (1998) Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta-antagonist and inducing apoptosis. J Blood 92:3268–3276

    CAS  Google Scholar 

  57. Tolstrup AB, Bejder A, Fleckner J, Justesen J (1995) Transcriptional regulation of the interferon-γ inducible tryptophanyl tRNA synthetase includes alternative splicing. J Biol Chem 270:397–403

    Article  PubMed  CAS  Google Scholar 

  58. Fleckner J, Rasmussen HH, Justesen J (1991) Human interferon gamma potently induces the synthesis of a 552 kDa protein highly homologous to rabbit peptide chain release factor and bovine tryptophan. Proc Natl Acad Sci USA 88:11520–11524

    Article  PubMed  CAS  Google Scholar 

  59. Shaw AC, Rossel LM, Roepstorff P, Justesen J, Christiansen G, Birkelund S (1999) Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two dimensional gel electrophoresis. Electrophoresis 20:984–993

    Article  PubMed  CAS  Google Scholar 

  60. Tzima E, Reader JS, Irani-Tehrani M, Ewalt KL, Schwartz MA, Schimmel P (2005) VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 280:2405–2408

    Article  PubMed  CAS  Google Scholar 

  61. Clark LI, Dewald B, Geiser T, Moser B, Baggiolini M (1993) Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci USA 90:3574–3577

    Article  Google Scholar 

  62. Jeong EJ, Hwang GS, Kim KH, Kim MJ, Kim S, Kim KS (2000) Structural analysis of multi-functional peptide motifs present in human bifunctional tRNA synthetase: identification of RNA binding residues and functional implications for tandem repeats. Biochemistry 39:15775–15782

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Zeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, R., Chen, YC., Zeng, Z. et al. Different angiogenesis effect of mini-TyrRS/mini-TrpRS by systemic administration of modified siRNAs in rats with acute myocardial infarction. Heart Vessels 25, 324–332 (2010). https://doi.org/10.1007/s00380-009-1200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-009-1200-z

Key words

Navigation