Skip to main content
Log in

Causal association between rheumatoid arthritis and a decreased risk of Alzheimer’s disease

A Mendelian randomization study

Kausalzusammenhang zwischen rheumatoider Arthritis und vermindertem Risiko für M. Alzheimer

Eine Mendel-Randomisierungsstudie

  • Originalien
  • Published:
Zeitschrift für Rheumatologie Aims and scope Submit manuscript

Abstract

Objective

This study aimed to examine whether rheumatoid arthritis (RA) is causally associated with Alzheimer’s disease (AD).

Methods

We performed a two-sample Mendelian randomization (MR) analysis using the inverse-variance weighted (IVW), weighted median, and MR-Egger regression methods. We used the publicly available summary statistics datasets from three-stage trans-ethnic genome-wide association studies (GWAS) meta-analyses of 29,880 RA cases and 73,758 controls as exposures and a meta-analysis of 4 GWAS datasets consisting of 17,008 AD cases and 37,154 controls of European descent as outcomes.

Results

We selected 80 single nucleotide polymorphisms (SNPs) from GWAS data on RA as instrumental variables (IVs), 60 of which were associated with RA on a genome-wide significance level. The IVW method showed evidence to support an inverse causal association between RA and AD (β = −0.039, standard error [SE] = 0.017, P= 0.021). MR-Egger regression revealed that directional pleiotropy was unlikely to be a source of bias in the results (intercept = 0.002; P= 0.649). The MR-Egger analysis showed no causal association between RA and AD (β = −0.050, SE = 0.030, P= 0.096). However, the weighted median approach showed that RA and AD were causally linked (β = −0.078, SE = 0.024, P= 0.001). The funnel plot did not show heterogeneity between IV estimates based on the individual variants.

Conclusions

The MR analysis supports that RA was causally associated with a reduced risk of AD.

Zusammenfassung

Ziel

Die vorliegende Studie zielte darauf ab zu untersuchen, ob rheumatoide Arthritis (RA) in einem kausalen Zusammenhang mit M. Alzheimer stehe.

Methoden

Dazu wurde die Analyse einer 2‑Stichproben-Mendel-Randomisierung (MR) unter Einsatz von Verfahren mit inverser Varianzgewichtung (IVW), gewichtetem Mittel und der MR-Egger-Regression durchgeführt. Die Autoren verwendeten die Metaanalysen der öffentlich zugänglichen zusammenfassenden statistischen Datensätze von dreistufigen transethnischen genomweiten Assoziationsstudien (GWAS) mit 29.880 RA-Fällen und 73.758 Kontrollen als Exposition und eine Metaanalyse von 4 GWAS-Datensätzen mit 17.008 AD(Alzheimer’s disease)-Fällen und 37.154 Kontrollen europäischer Abstammung als Endpunkte.

Ergebnisse

Als instrumentelle Variablen (IV) wurden 80 Einzelnukleotidpolymorphismen (SNPs) aus den GWAS-Daten zur RA ausgewählt, von denen 60 auf einem genomweiten Signifikanzniveau mit RA assoziiert waren. Die IVW-Methode erbrachte Belege für die Stützung eines inversen Kausalzusammenhangs zwischen RA und AD (β = −0,039; Standardfehler, „standard error“, SE: 0,017, p= 0,021). Anhand der MR-Egger-Regression zeigte sich, dass es unwahrscheinlich war, dass die direktionale Pleiotropie eine Quelle für Bias in den Ergebnissen darstellte („intercept“ = 0,002; p= 0,649). Die MR-Egger-Analyse ergab keinen Kausalzusammenhang zwischen RA und AD (β = −0,050; SE = 0,030; p= 0,096). Allerdings zeigte der Ansatz unter Verwendung des gewichteten Mittels, dass RA und AD kausal verknüpft waren (β = −0,078; SE = 0,024; p= 0,001). Der Funnel Plot ergab keine Heterogenität zwischen IV-Schätzwerten auf der Basis der individuellen Varianten.

Schlussfolgerung

Die MR-Analyse lieferte Hinweise darauf, dass die RA kausal mit einem verminderten Risiko für M. Alzheimer verknüpft sei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Baxter D, McInnes IB, Kurowska-Stolarska M (2012) Novel regulatory mechanisms in inflammatory arthritis: a role for microRNA. Immunol Cell Biol 90(3):288–292

    Article  CAS  PubMed  Google Scholar 

  2. Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol 44(2):512–525

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bowden J, Davey Smith G, Haycock PC et al (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40(4):304–314

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boyd TD, Bennett SP, Mori T et al (2010) GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J Alzheimers Dis 21(2):507–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37(7):658–665

    Article  PubMed  PubMed Central  Google Scholar 

  6. Burgess S, Daniel RM, Butterworth AS et al (2014) Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol 44(2):484–495

    Article  PubMed  PubMed Central  Google Scholar 

  7. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burgess S, Thompson SG, Collaboration CCG (2011) Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol 40(3):755–764

    Article  PubMed  Google Scholar 

  9. Edwards C, Cooper C (2006) Early environmental factors and rheumatoid arthritis. Clin Exp Immunol 143(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315(7121):1533–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eriksson UK, Pedersen NL, Reynolds CA et al (2011) Associations of gene sequence variation and serum levels of C‑reactive protein and interleukin-6 with Alzheimer’s disease and dementia. J Alzheimers Dis 23(2):361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferraccioli G, Bracci-Laudiero L, Alivernini S et al (2010) Interleukin-1β and interleukin-6 in arthritis animal models: roles in the early phase of transition from acute to chronic inflammation and relevance for human rheumatoid arthritis. Mol Med 16(552):11–12

    Google Scholar 

  13. Ferraccioli G, Carbonella A, Gremese E et al (2012) Rheumatoid arthritis and Alzheimer’s disease: genetic and epigenetic links in inflammatory regulation. Discov Med 14(79):379–388

    PubMed  Google Scholar 

  14. Geekiyanage H, Jicha GA, Nelson PT et al (2012) Blood serum miRNA: non-invasive biomarkers for Alzheimer’s disease. Exp Neurol 235(2):491–496

    Article  CAS  PubMed  Google Scholar 

  15. Hartwig FP, Davies NM, Hemani G et al (2016) Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Oxford University Press, Oxford

    Google Scholar 

  16. Hemani G, Zheng J, Wade K et al (2016) MR-Base: a platform for systematic causal inference across the phenome using billions of genetic associations. bioRxiv 16:78972

    Google Scholar 

  17. Hill HA, Kleinbaum DG (2000) Bias in observational studies. Encyclopedia of Biostatistics

    Google Scholar 

  18. Kukull WA, Higdon R, Bowen JD et al (2002) Dementia and Alzheimer disease incidence: a prospective cohort study. Arch Neurol 59(11):1737–1746

    Article  PubMed  Google Scholar 

  19. Lambert J‑C, Ibrahim-Verbaas CA, Harold D et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lawlor DA (2016) Commentary: two-sample mendelian randomization: opportunities and challenges. Int J Epidemiol 45(3):908

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee YH, Bae S‑C, Choi SJ et al (2012) Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 39(12):10627–10635

    Article  CAS  PubMed  Google Scholar 

  22. Lee YH, Bae SC, Song GG (2013) Hepatitis B virus (HBV) reactivation in rheumatic patients with hepatitis core antigen (HBV occult carriers) undergoing anti-tumor necrosis factor therapy. Clin Exp Rheumatol 31:118–121

    PubMed  Google Scholar 

  23. McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47(2):425–432

    Article  CAS  PubMed  Google Scholar 

  24. Okada Y, Wu D, Trynka G et al (2014) Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506(7488):376

    Article  CAS  PubMed  Google Scholar 

  25. Paaby AB, Rockman MV (2013) The many faces of pleiotropy. Trends Genet 29(2):66–73

    Article  CAS  PubMed  Google Scholar 

  26. Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2‑sample instrumental variable estimators. Am J Epidemiol 178(7):1177–1184

    Article  PubMed  PubMed Central  Google Scholar 

  27. Policicchio S, Ahmad AN, Powell JF et al (2017) Rheumatoid arthritis and risk for Alzheimer’s disease: a systematic review and meta-analysis and a Mendelian Randomization study. Sci Rep 7(1):12861

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rees J, Wood AM, Burgess S (2017) Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat Med 36(29):4705–4718

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith GD, Ebrahim S (2008) Mendelian randomization: genetic variants as instruments for strengthening causal inference in observational studies

    Google Scholar 

  30. Smith GD, Ebrahim S (2004) Mendelian randomization: prospects, potentials, and limitations. Int J Epidemiol 33(1):30–42

    Article  PubMed  Google Scholar 

  31. Swerdlow DI, Kuchenbaecker KB, Shah S et al (2016) Selecting instruments for Mendelian randomization in the wake of genome-wide association studies. Int J Epidemiol 45(5):1600–1616

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant from the Korea Healthcare technology R&D Project, Ministry for Health and Welfare, Republic of Korea (HI15C2958).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Lee MD, PhD.

Ethics declarations

Conflict of interest

S.-C. Bae and Y.H. Lee declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Redaktion

U. Müller-Ladner, Bad Nauheim

U. Lange, Bad Nauheim

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bae, SC., Lee, Y.H. Causal association between rheumatoid arthritis and a decreased risk of Alzheimer’s disease. Z Rheumatol 78, 359–364 (2019). https://doi.org/10.1007/s00393-018-0504-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00393-018-0504-8

Keywords

Schlüsselwörter

Navigation