Skip to main content
Log in

Real space observation of three-dimensional network structure of hydrated fibrin gel

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract.

The three-dimensional (3-d) network structure of the gel composed of rigid rod-shaped protein (fibrin gel) in a hydrated state was elucidated from a real space observation by confocal laser scanning microscopy. It was ascertained that two the length scales that characterize the gel network (diameter of polymer chain and typical mesh size of the gel network) can be determined quantitatively by a 3-d box-counting analysis and a 3-d Fourier transform (FT) analysis to obtain the power spectra. Turbidity measurements were employed for the determination of average fiber diameter. Self-similar structure of the gel network was found to be realized in the range between those two scales. The fibrin gels formed by larger amounts of thrombin showed a smaller fractal dimension that, deduced by the box-counting method, was in good agreement with the result from 3-d FT analysis and with a recent dynamic light scattering study (Kita R. et al. (2002) Biomacromolecules 3:1013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Freltoft T, Kjems JK, Sinha SK (1986) Phys Rev B 33:269

    Article  CAS  Google Scholar 

  2. Martin JE, Adolf D, Wilcoxon JP (1988) Phys Rev Lett 61:2620

    Article  CAS  Google Scholar 

  3. Shih WH, Shih WY, Kim SI, Liu J, Aksay IA (1990) Phys Rev A 42:4772

    Article  CAS  Google Scholar 

  4. Tokita M, Tanaka T (1991) J Chem Phys 95:4613

    Article  CAS  Google Scholar 

  5. Kaibara M (1994) Polym Gels and Networks 2:1

    Article  CAS  Google Scholar 

  6. Tanaka F (2000) Macromolecules 33:4249

    Article  CAS  Google Scholar 

  7. Hirokawa Y, Jinnai H, Nishikawa Y, Okamoto T, Hashimoto T (1999) Macromolecules 32:7093

    Article  CAS  Google Scholar 

  8. Blombäck B, Carlsson K, Hessel B, Lilgeborg A, Procyk R, Aslund N (1989) Biochim Biophys Acta 997:96

    Article  Google Scholar 

  9. Stauffer D (1976) J Chem Soc Faraday Trans 272:1354

    Article  Google Scholar 

  10. Muthukumar M (1983) J Chem Phys 83:3161

    Article  Google Scholar 

  11. Stauffer D (1985) Introduction to percolation theory. Taylor & Francis, London

  12. Weisel JW (1986) Biophys J 50:1079

    Article  CAS  Google Scholar 

  13. Kaibara M (1996) Biorheology 33:101

    CAS  Google Scholar 

  14. Kita R, Takahashi A, Kaibara M, Kubota K (2002) Biomacromolecules 3:1013

    Article  CAS  Google Scholar 

  15. Platt JL, Michael AF (1988) J Histochem Cytochem 31:840

    Article  Google Scholar 

  16. Carr ME, Hermans J (1978) Macromolecules 11:46

    Article  CAS  Google Scholar 

  17. Farmer JD, Ott E, Yorke JA (1983) Physica D 7:153

    Article  Google Scholar 

  18. Rothschild WG (1998) Fractals in chemistry. Wiley, New York

  19. Tanaka H, Hayashi T, Nishi T (1986) J Appl Phys 59 3627

    Article  CAS  Google Scholar 

  20. Ryan EA, Mockros LF, Weisel JW, Lorand L (1999) Biophys J 77:2813

    Article  CAS  Google Scholar 

  21. Ferri F, Greco M, Arcovito G, Bassi FA, DeSpirito M, Paganini E, Rocco M (2001) Phys Rev E 63:31401

    Article  CAS  Google Scholar 

  22. Martin JE, WilcoxonJP (1988) Phys Rev Lett 61: 373; Martin JE, Wilcoxon JP, Odinek J (1991) Phys Rev A 43:858

    Article  CAS  Google Scholar 

  23. Norisuye T, Shibayama M, Tamaki R, Chujo Y (1999) Macromolecules 32:1528; Takata S, Norisuye T, Tanaka N, Shibayama M (2000) Macromolecules 33:5470

    Article  Google Scholar 

  24. Adam M, Lairez D (1996) Sol-gel transition In: Addad JPC (ed) The physical properties of polymeric gels. Wiley, New York, pp 87-142

  25. Ren SZ, Shi WF, Zhang WB, Sorensen CM (1992) Phys Rev A 45:2416

    Article  CAS  Google Scholar 

  26. Doi M, Onuki A (1992) J Phys II (France) 2:1631

    Article  CAS  Google Scholar 

  27. Lidar DA, Biham O, Avnir D (1997) J Chem Phys 106:10359

    Article  CAS  Google Scholar 

  28. Ferry JD, Morrison PR (1947) J Am Chem Soc 69:388

    Article  CAS  Google Scholar 

Download references

Acknowledgment.

We acknowledge Dr. T. Kobayashi and Ms. K. Ishii of RIKEN for their advice on the experiment of the CLSM and Dr. M. Takemasa of Waseda University for helpful discussions about computer programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rio Kita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, A., Kita, R., Shinozaki, T. et al. Real space observation of three-dimensional network structure of hydrated fibrin gel. Colloid Polym Sci 281, 832–838 (2003). https://doi.org/10.1007/s00396-002-0839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-002-0839-0

Keywords

Navigation