Skip to main content
Log in

Differences in origin and fate between the cranial and caudal spinal cord during normal and disturbed human development

  • Regular Paper
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

Differences in histological appearance between the cranial and caudal parts of the spinal cord and associated axial organs were analyzed in 9- and 15-week-old human dysraphic fetuses and compared with normal fetuses. In human development the cranial part of the neural tube down to the lumbosacral level forms during primary neurulation, while its caudal part results from secondary neurulation. In the 9-week fetus with cervical spina bifida, the cranial spinal cord displayed a variety of morphological changes along the cranio-caudal axis. Spinal cord in the upper cervical region transformed into the area cerebrovasculosa, while the lower cervical and thoracic levels showed only disturbed differentiation of the cell layers and roof plate. The degree of the cranial spinal cord dysmorphogenesis correlated with anomalies of the underlying notochord and vertebral column. The caudal to lumbosacral region of the spinal cord appeared normal. In the case of the 15-week-old fetus with complete dysraphia, the area cerebrovasculosa was found along the whole extent of the cranial spinal cord, while more caudally, all axial organs showed a normal histological structure. Our findings confirmed a different origin for the cranial and caudal parts of the human spinal cord. The appearance of dysraphic disorders corresponded to the time of primary neurulation; therefore, they resulted in the faulty formation of the cranial spinal cord. Normally formed caudal spinal cord appears during secondary neurulation at later developmental stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldwin CT, Hoth CF, Amos JA, DaSilva EO, Milunsky A (1992) An exonic mutation in the Hup2 paired domain causes Waardenburg’s syndrome. Nature 355: 637–638

    Article  PubMed  CAS  Google Scholar 

  2. Barson AJ (1970) Spina bifida: the significance of the level and extent of the defect to the morphogenesis. Dev Med Child Neurol 12: 129–144

    Article  PubMed  CAS  Google Scholar 

  3. Dressier GR, Gruss P (1988) Do multigene families regulate vertebrate development? Trends Genet 4: 214–219

    Article  Google Scholar 

  4. Gajovic S, Kostovic-Knezevic LJ, Svajger A (1989) Origin of the notochord in the rat embryo tail. Anat Embryol 179: 305–310

    Article  PubMed  CAS  Google Scholar 

  5. Gruss P, Walther C (1992) Pax in development. Cell 69: 719–722

    Article  PubMed  CAS  Google Scholar 

  6. Kessel M, Gruss P (1990) Murine developmental control genes. Science 249: 374–379

    Article  PubMed  CAS  Google Scholar 

  7. Lamire TJ (1969) Variations in development of the caudal neural tube in human embryos. Teratology 2: 361–370

    Article  Google Scholar 

  8. Marin-Padilla M (1966) Study of the vertebral column in human craniorachischisis. The significance of notochordal alterations. Acta Anat (Basel) 63: 32–48

    Article  CAS  Google Scholar 

  9. Marin-Padilla M (1979) Notochordal-basichondrocranium relationship: abnormalities in experimental axial skeletal (dysraphic) disorders. J Embryol Exp Morphol 53: 15–38

    PubMed  CAS  Google Scholar 

  10. Marin-Padilla M (1991) Cephalic axial skeletal neural dysraphic disorders: embryology and pathology. Can J Neurol Sci 18: 153–169

    PubMed  CAS  Google Scholar 

  11. Moore KL, Persaud TVN (1993) The nervous system. In: McGrew L, Kilmer L (eds) The developing human. Clinically oriented embryology. Saunders, Philadelphia, pp 385–422

    Google Scholar 

  12. Müller F, O’Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of the secondary neurulation at stage 12. Anat Embryol 176: 413–430

    Article  PubMed  Google Scholar 

  13. Nievelstein RAJ, Hartwug NG, Vermelj-Kerrs CJ, Valk J (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48: 21–31

    Article  PubMed  CAS  Google Scholar 

  14. Placzek M, Tessier-Lavigne M, Yamada T, Jessell T, Dodd J (1991) Mesodermal control of neural cell identity: floor plate induction by the notochord. Science 250: 985–988

    Article  Google Scholar 

  15. Saraga-Babic M (1991) Development of the notochord in normal and malformed human embryos and fetuses. Int J Dev Biol 35: 345–352

    Google Scholar 

  16. Saraga-Babic M, Saraga M (1993) Role of the notochord in the development of cephalic structures in normal and anencephalic human fetuses. Virchows Arch [A] 422: 161–168

    Article  CAS  Google Scholar 

  17. Saraga-Babic M, Sapunar D, Stefanovic V (1993) Histological features of axial structures during embryonic and fetal stages of human craniorachischisis. Acta Neuropathol 86: 289–294

    Article  PubMed  CAS  Google Scholar 

  18. Saraga-Babic M, Stefanovic V, Wartiovaara J, Lehtonen E (1993) Spinal cord-notochord relationship in normal human embryos and in a human embryo with double spinal cord. Acta Neuropathol 86: 509–514

    Article  PubMed  CAS  Google Scholar 

  19. Saraga-Babic M, Lehtonen E, Svajger A, Wartiovaara J (1994) Morphological and immunohistochemical characteristics of axial structures in the transitory human tail. Ann Anat 176: 277–286

    PubMed  CAS  Google Scholar 

  20. Saraga-Babic M, Sapunar D, Wartiovaara J (1995) Variations in the formation of the human caudal spinal cord. J Hirnforsch 36: 341–347

    PubMed  CAS  Google Scholar 

  21. Schoenwolf GC (1977) Tail (end) bud contributions to the posterior region of the chick embryo. J Exp Zool 201: 227–246

    Article  Google Scholar 

  22. Schoenwolf GC (1978) An SEM of posterior spinal cord development in the chick embryo. Scanning Electron Microsc II: 739–746

    Google Scholar 

  23. Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169: 361–376

    Article  PubMed  CAS  Google Scholar 

  24. Schoenwolf GC, Delongo J (1980) Ultrastructure of secondary neurulation in the chick embryo. Am J Anat 158: 43–63

    Article  PubMed  CAS  Google Scholar 

  25. Schoenwolf GC, Desmond ME (1984) Descriptive studies of occlusion and reopening of the spinal canal of the early chick embryo. Anat Rec 209: 251–263

    Article  PubMed  CAS  Google Scholar 

  26. Schoenwolf GC, Franks MV (1984) Quantitative analysis of changes in cell shapes during banding of the avian neural plate. Dev Biol 105: 257–272

    Article  PubMed  CAS  Google Scholar 

  27. Schoenwolf GC, Smith JL (1990) Mechanisms of neurulation: traditional viewpoint and recent advances. Development 109: 243–270

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saraga-Babic, M., Krolo, M., Sapunar, D. et al. Differences in origin and fate between the cranial and caudal spinal cord during normal and disturbed human development. Acta Neuropathol 91, 194–199 (1996). https://doi.org/10.1007/s004010050413

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004010050413

Key words

Navigation