Skip to main content
Log in

Overexpression of Drosophila Rad51 protein (DmRad51) disrupts cell cycle progression and leads to apoptosis

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Among proteins involved in homologous recombination, Rad51 is an essential enzyme in DNA repair and recombination. However, little is known about its role in cell cycle regulation and apoptosis. To examine the function of Drosophila Rad51 (DmRad51) in cell cycle regulation and apoptosis, DmRad51 protein was overexpressed using a heat shock-inducible promoter or the UAS–GAL4 binary expression system. We observed that ubiquitous expression of DmRad51 protein in flies carrying hsp26Rad51 or UASRad51 transgenes was lethal. Induction of DmRad51—more specifically in eye or wing imaginal discs—caused tissue-specific cell death in the domains of DmRad51 expression. Cell death was due to apoptosis, as shown by staining with the TdT-mediated dUTP nick-end labeling assay. Immunocytochemistry revealed that cells expressing DmRad51 colocalized with apoptotic cells. In addition, the phenotypes caused by the overexpression of DmRad51 were similar to those caused by ectopic expression of Reaper, a proapoptotic protein, and were partially suppressed by the coexpression of p35, an antiapoptotic protein. Using an antiphosphohistone H3 antibody, we also observed that the overexpression of DmRad51 protein disrupted normal cell cycle progression in eye imaginal discs. Taken together, these results show that ectopically expressed DmRad51 disrupts cell cycle regulation and induces apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–l
Fig. 3a–f
Fig. 4

Similar content being viewed by others

References

  • Aihara H, Kurumizaka Y, Ito H, Yokoyama S, Shibata T (1999) The N-terminal domain of the human Rad51 protein binds DNA: structure and a DNA binding surface as revealed by NMR. J Mol Biol 290:495–504

    CAS  PubMed  Google Scholar 

  • Akaboshi E, Inoue Y, Ryo H (1994) Cloning of the cDNA and genomic DNA that correspond to the recA-like gene of Drosophila melanogaster. Jpn J Genet 69:663–670

    CAS  PubMed  Google Scholar 

  • Basile G, Aker M, Mortimer RK (1992) Nucleotide sequence and transcriptional regulation of the yeast recombinational repair gene RAD51. Mol Cell Biol 12:3235–3246

    CAS  PubMed  Google Scholar 

  • Baumann P, West SC (1998) Role of the human Rad51 protein in homologous recombination and double-stranded-break repair. Trends Biol Sci 23:247–251

    CAS  Google Scholar 

  • Buchhop S, Gibson MK, Wang XW, Wagner P, Stürzbecher H-W, Harris C (1997) Interaction of p53 with the human Rad51 protein. Nucleic Acids Res 25:3868–3874

    CAS  PubMed  Google Scholar 

  • Chen P-L, Chen C-F, Chen Y, Xioa J, Sharp D, Lee W-H (1998) The BRC repeats in BRCA2 are critical for RAD51 binding and resistance to methyl methanesulfonate treatment. Proc Natl Acad Sci USA 95:5287–5292

    CAS  PubMed  Google Scholar 

  • Chen G, Yuan S-SF, Liu W, Xu Y, Trujillo K, Song B, Cong F, Goff SP, Wu Y, Arlinghaus R, Baltimore D, Gassers PJ, Park MS, Sung P, Lee EY-HP (1999) Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274:12748–12752

    CAS  PubMed  Google Scholar 

  • Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a Baculovirus gene during infection of insect cells. Science 254:1388–1390

    CAS  PubMed  Google Scholar 

  • Doren MV, Williamson AL, Lehmann R (1998) Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol 8:243–246

    PubMed  Google Scholar 

  • Edelmann W, Kucherlapati R (1996) Role of recombination enzymes in mammalian cell survival. Proc Natl Acad Sci USA 93:6225–6227

    Article  CAS  PubMed  Google Scholar 

  • Flygare J, Fält S, Ottervald J, Castro J, Dackland Å-L, Hellgren D, Wennborg A (2001) Effects of HsRad51 overexpression on cell proliferation, cell cycle progression, and apoptosis. Exp Cell Res 268:61–69

    Article  CAS  PubMed  Google Scholar 

  • Freeman M (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87:651–660

    Article  CAS  PubMed  Google Scholar 

  • Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid, and grim through inhibition of IAP function. EMBO J 19:589–597

    Article  CAS  PubMed  Google Scholar 

  • Gustafson K, Boulianne GL (1996) Distinct expression patterns detected within individual tissues by the GAL4 enhancer trap technique. Genome 39:174–182

    CAS  PubMed  Google Scholar 

  • Harlow E, Lane D (1988) Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Havre PA, Rice MC, Noe M, Kmiec EB (1998) The human Rec2/Rad51B gene acts as a DNA damage sensor by inducing G1 delay and hypersensitivity to ultraviolet irradiation. Cancer Res 58:4733–4739

    CAS  PubMed  Google Scholar 

  • Havre PA, Rice MC, Ramos R, Kmiec EB (2000) HsRec2/Rad51L1, a protein influencing cell cycle progression, has protein kinase activity. Exp Cell Res 254:33–44

    Article  CAS  PubMed  Google Scholar 

  • Hay BA, Tanya W, Rubin GM (1994) Expression of baculovirus p35 prevents cell death in Drosophila. Development 120:2121–2129

    CAS  PubMed  Google Scholar 

  • Helms W, Lee H, Ammerman M, Parks AL, Muskavitch MAT, Yedvobnick B (1999) Engineered truncations in the Drosophila mastermind protein disrupt notch pathway function. Dev Biol 215:358–374

    Article  CAS  PubMed  Google Scholar 

  • Kim PM, Allen C, Wagener BM, Shen Z, Nickoloff JA (2001) Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells. Nucleic Acids Res 29:4352–4360

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Yokokura T, Nagata S (1997) Activation of distinct caspase-like proteases by Fas and reaper in Drosophila cells. Proc Natl Acad Sci USA 94:11951–11956

    Article  CAS  PubMed  Google Scholar 

  • Krejci L, Damborsky J, Thomsen B, Duno M, Bendixen C (2001) Molecular dissection of interactions between Rad51 and members of the recombination-repair group. Mol Cell Biol 21:966–976

    Article  CAS  PubMed  Google Scholar 

  • Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89:7491–7495

    CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lim D-S, Hasty P (1996) A mutation in mouse rad51 results in an early embryonic lethal that is suppressed by a mutation in p53. Mol Cell Biol 16:7133–7143

    CAS  PubMed  Google Scholar 

  • Lundin C, Schultz N, Arnaudeau C, Mohindra A, Hansen TL, Heleday T (2003) RAD51 is involved in repair of damage associated with DNA replication in mammalian cells. J Mol Biol 328:521–535

    Article  CAS  PubMed  Google Scholar 

  • Maacke H, Opitz S, Jost K, Hamdorf W, Henning W, Krüger S, Feller AC, Lopens A, Diedrich K, Schwinger E, Stürzbecher H-W (2000) Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int J Cancer 88:907–913

    Article  CAS  PubMed  Google Scholar 

  • McKee BD, Ren X-J, Hong C-s (1996) A recA-like gene in Drosophila melanogaster that is expressed at high levels in female but not male meiotic tissues. Chromosoma 104:479–488

    Article  CAS  PubMed  Google Scholar 

  • Moses K, Rubin GM (1991) glass encodes a site-specific DNA-binding protein that is regulated in response to positional signals in the developing Drosophila eye. Genes Dev 5:583–593

    CAS  PubMed  Google Scholar 

  • Nooij JC de, Hariharan IK (1995) Uncoupling cell fate determination from patterned cell division in the Drosophila eye. Science 270:983–985

    PubMed  Google Scholar 

  • Ogawa T, Shinihara A, Nabetani A, Ikeya T, Yu X, Egelmam EH, Ogawa H (1993) RecA-like recombination proteins in eukaryotes: functions and structures of Rad51 genes. Cold Spring Harb Symp Quant Biol 58:567–576

    CAS  PubMed  Google Scholar 

  • Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertsons S, Whittaker K, Demsky M, Fisher WW, Buchman A, Duyk G, Friedman L, Prives C, Kopczynski C (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101:91–101

    Article  CAS  PubMed  Google Scholar 

  • Pronk GJ, Ramer K, Amiri P, Williams LT (1996) Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by reaper. Science 271:808–810

    CAS  PubMed  Google Scholar 

  • Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, Ropers H-H, Sedivy JM, Golub EI, Fritz E, Haaf T (2002) Formation of higher-order nuclear Rad51 structure is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 115:153–164

    CAS  PubMed  Google Scholar 

  • Rodriguez A, Chen P, Abrams JM (1998) Insights from model systems molecular prophets of death in the fly. Am J Hum Genet 62:514–519

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  • Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feuteun J, Ashley T, Livingston DM (1997) Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell 88:265–275

    Article  CAS  PubMed  Google Scholar 

  • Shin DS, Pellegrin L, Daniels DS, Yelent B, Craig L, Bates D, Yu DS, Shivji MK, Hitomi C, Arvai, AS, Volkmann N, Tsuruta H, Blundell TL, Venkitaraman AR, Tainer JA (2003) Full-length archaeal Rad51 structure and mutants: mechanisms for RAD51 assembly and control by BRCA2. EMBO J 22:4566–4576

    Article  CAS  PubMed  Google Scholar 

  • Shinohara A, Ogawa H, Ogawa T (1992) Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470

    Article  CAS  PubMed  Google Scholar 

  • Sonoda E, Buerstedde MJ-M, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S (1998) Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 17:598–608

    Article  CAS  PubMed  Google Scholar 

  • Staeva-Vieira E, Yoo S, Lehmann R (2003) An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J 22:5863–5874

    Article  CAS  PubMed  Google Scholar 

  • Tsuzuki T, Fujii Y, Sakumi K, Tominaga Y, Nakao K, Sekiguchi M, Matsushiro A, Yoshimura Y, Morita T (1996) Targeted disruption of the Rad51 gene leads to lethality in embryonic mice. Proc Natl Acad Sci USA 93:6236–6240

    Article  CAS  PubMed  Google Scholar 

  • Vispé S, Cazaux C, Lesca C, Defais M (1998) Overexpression of Rad51 protein stimulates homologous recombination and increases resistance of mammalian cells to ionizing radiation. Nucleic Acids Res 26:2859–2864

    Article  PubMed  Google Scholar 

  • White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683

    CAS  PubMed  Google Scholar 

  • White K, Tahaoglu E, Steller H (1996) Cell killing by the Drosophila gene reaper. Science 271:805–807

    CAS  PubMed  Google Scholar 

  • Yamamoto A, Taki T, Yagi H, Habu T, Yoshida K, Yoshimura Y, Matsushiro A, Nishimune Y, Morita T (1996) Cell cycle-dependent expression of the mouse Rad51 gene in proliferating cells. Mol Genet Genomics 251:1–12

    Article  CAS  Google Scholar 

  • Yáñez RJ, Porter ACG (1999) Gene targeting is enhanced in human cells overexpressing hRAD51. Gene Ther 6:1282–1290

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John R. Dunlap for his help in using confocal microscope, Greg Warren for the hsp26Rad51 construct, and Jae H. Park for the gifts of several plasmids and fly stocks used in this work. We also thank Mary Ann Handel for critically reading the manuscript. This research was supported by a grant GM40489 from the National Institutes of Health (BDM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. McKee.

Additional information

Communicated by P. Moens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, S., McKee, B.D. Overexpression of Drosophila Rad51 protein (DmRad51) disrupts cell cycle progression and leads to apoptosis. Chromosoma 113, 92–101 (2004). https://doi.org/10.1007/s00412-004-0300-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-004-0300-x

Keywords

Navigation