Skip to main content
Log in

Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Transcription is a central function occurring in the nucleus of eukaryotic cells in coordination with other nuclear processes. During transcription, the nascent pre-mRNA associates with mRNA-binding proteins and undergoes a series of processing steps, resulting in export-competent mRNA ribonucleoprotein complexes (mRNPs) that are transported into the cytoplasm. Experimental evidence increasingly indicates that the different processing steps (5′-end capping, splicing, 3′-end cleavage) and mRNP export are connected to each other as well as to transcription, both functionally and physically. Here, we review the overall process of mRNP biogenesis with particular emphasis on the functional coupling of transcription with mRNP biogenesis and export and its relationship to nuclear organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abruzzi KC, Lacadie S, Rosbash M (2004) Biochemical analysis of TREX complex recruitment to intronless and intron-containing yeast genes. EMBO J 23:2620–2631

    PubMed  CAS  Google Scholar 

  • Abruzzi KC, Belostotsky DA, Chekanova JA, Dower K, Rosbash M (2006) 3′-End formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J 25:4253–4262

    PubMed  CAS  Google Scholar 

  • Aguilera A (2005) Cotranscriptional mRNP assembly: from the DNA to the nuclear pore. Curr Opin Cell Biol 17:242–250

    PubMed  CAS  Google Scholar 

  • Ahmed S, Brickner JH (2007) Regulation and epigenetic control of transcription at the nuclear periphery. Trends Genet 23:396–402

    PubMed  CAS  Google Scholar 

  • Ahn SH, Kim M, Buratowski S (2004) Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol Cell 13:67–76

    PubMed  CAS  Google Scholar 

  • Akhtar A, Gasser SM (2007) The nuclear envelope and transcriptional control. Nat Rev Genet 8:507–517

    PubMed  CAS  Google Scholar 

  • Anderson JT, Wilson SM, Datar KV, Swanson MS (1993) NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability. Mol Cell Biol 13:2730–2741

    PubMed  CAS  Google Scholar 

  • Andrulis ED, Guzman E, Doring P, Werner J, Lis JT (2000) High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev 14:2635–2649

    PubMed  CAS  Google Scholar 

  • Ansari A, Hampsey M (2005) A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19:2969–2978

    PubMed  CAS  Google Scholar 

  • Bentley DL (2005) Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 17:251–256

    PubMed  CAS  Google Scholar 

  • Blobel G (1985) Gene gating: a hypothesis. Proc Natl Acad Sci U S A 82:8527–8529

    PubMed  CAS  Google Scholar 

  • Brickner DG, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee PC, Widom J, Brickner JH (2007) H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol 5:e81

    PubMed  Google Scholar 

  • Brown CR, Silver PA (2007) Transcriptional regulation at the nuclear pore complex. Curr Opin Genet Dev 17:100–106

    PubMed  CAS  Google Scholar 

  • Buratowski S (2005) Connections between mRNA 3′ end processing and transcription termination. Curr Opin Cell Biol 17:257–261

    PubMed  CAS  Google Scholar 

  • Cabal GG, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin JC, Hurt EC, Nehrbass U (2006) SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature 441:770–773

    PubMed  CAS  Google Scholar 

  • Calvo O, Manley JL (2005) The transcriptional coactivator PC4/Sub1 has multiple functions in RNA polymerase II transcription. EMBO J 24:1009–1020

    PubMed  CAS  Google Scholar 

  • Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439

    PubMed  CAS  Google Scholar 

  • Chang M, French-Cornay D, Fan HY, Klein H, Denis CL, Jaehning JA (1999) A complex containing RNA polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p plays a role in protein kinase C signaling. Mol Cell Biol 19:1056–1067

    PubMed  CAS  Google Scholar 

  • Chapman RD, Heidemann M, Albert TK, Mailhammer R, Flatley A, Meisterernst M, Kremmer E, Eick D (2007) Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. Science 318:1780–1782

    PubMed  CAS  Google Scholar 

  • Chávez S, Beilharz T, Rondón AG, Erdjument-Bromage H, Tempst P, Svejstrup JQ, Lithgow T, Aguilera A (2000) A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J 19:5824–5834

    PubMed  Google Scholar 

  • Chekanova JA, Abruzzi KC, Rosbash M, Belostotsky DA (2008) Sus1, Sac3, and Thp1 mediate post-transcriptional tethering of active genes to the nuclear rim as well as to non-nascent mRNP. RNA 14:66–77

    PubMed  CAS  Google Scholar 

  • Cheng H, Dufu K, Lee CS, Hsu JL, Dias A, Reed R (2006) Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127:1389–1400

    PubMed  CAS  Google Scholar 

  • Cole CN, Scarcelli JJ (2006) Transport of messenger RNA from the nucleus to the cytoplasm. Curr Opin Cell Biol 18:299–306

    PubMed  CAS  Google Scholar 

  • Cramer P, Bushnell DA, Kornberg RD (2001) Structural basis of transcription: RNA polymerase II at 2.8 Angstrom resolution. Science 292:1863–1876

    PubMed  CAS  Google Scholar 

  • Custodio N, Carvalho C, Condado I, Antoniou M, Blencowe BJ, Carmo-Fonseca M (2004) In vivo recruitment of exon junction complex proteins to transcription sites in mammalian cell nuclei. RNA 10:622–633

    PubMed  CAS  Google Scholar 

  • Dantonel JC, Murthy KG, Manley JL, Tora L (1997) Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 389:399–402

    PubMed  CAS  Google Scholar 

  • Dieppois G, Iglesias N, Stutz F (2006) Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol 26:7858–7870

    PubMed  CAS  Google Scholar 

  • Egloff S, O’Reilly D, Chapman RD, Taylor A, Tanzhaus K, Pitts L, Eick D, Murphy S (2007) Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Science 318:1777–1779

    PubMed  CAS  Google Scholar 

  • Fan HY, Merker RJ, Klein HL (2001) High-copy-number expression of Sub2p, a member of the RNA helicase superfamily, suppresses hpr1-mediated genomic instability. Mol Cell Biol 21:5459–5470

    PubMed  CAS  Google Scholar 

  • Fischer T, Strasser K, Racz A, Rodriguez-Navarro S, Oppizzi M, Ihrig P, Lechner J, Hurt E (2002) The mRNA export machinery requires the novel Sac3p–Thp1p complex to dock at the nucleoplasmic entrance of the nuclear pores. EMBO J 21:5843–5852

    PubMed  CAS  Google Scholar 

  • Fischer T, Rodriguez-Navarro S, Pereira G, Racz A, Schiebel E, Hurt E (2004) Yeast centrin Cdc31 is linked to the nuclear mRNA export machinery. Nat Cell Biol 6:840–848

    PubMed  CAS  Google Scholar 

  • Fleckner J, Zhang M, Valcarcel J, Green MR (1997) U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP-branchpoint interaction. Genes Dev 11:1864–1872

    PubMed  CAS  Google Scholar 

  • Gallardo M, Luna R, Erdjument-Bromage H, Tempst P, Aguilera A (2003) Nab2p and the Thp1p–Sac3p complex functionally interact at the interface between transcription and mRNA metabolism. J Biol Chem 278:24225–24232

    PubMed  CAS  Google Scholar 

  • Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116:63–73

    PubMed  CAS  Google Scholar 

  • Gatfield D, Le Hir H, Schmitt C, Braun IC, Kocher T, Wilm M, Izaurralde E (2001) The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila. Curr Biol 11:1716–1721

    PubMed  CAS  Google Scholar 

  • Gilbert W, Guthrie C (2004) The Glc7p nuclear phosphatase promotes mRNA export by facilitating association of Mex67p with mRNA. Mol Cell 13:201–212

    PubMed  CAS  Google Scholar 

  • Glover-Cutter K, Kim S, Espinosa J, Bentley DL (2008) RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 15:71–78

    PubMed  CAS  Google Scholar 

  • Goodrich JA, Tjian R (1994) Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77:145–156

    PubMed  CAS  Google Scholar 

  • Green DM, Johnson CP, Hagan H, Corbett AH (2003) The C-terminal domain of myosin-like protein 1 (Mlp1p) is a docking site for heterogeneous nuclear ribonucleoproteins that are required for mRNA export. Proc Natl Acad Sci U S A 100:1010–1015

    PubMed  CAS  Google Scholar 

  • Gruter P, Tabernero C, von Kobbe C, Schmitt C, Saavedra C, Bachi A, Wilm M, Felber BK, Izaurralde E (1998) TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1:649–659

    PubMed  CAS  Google Scholar 

  • Guiguen A, Soutourina J, Dewez M, Tafforeau L, Dieu M, Raes M, Vandenhaute J, Werner M, Hermand D (2007) Recruitment of P-TEFb (Cdk9-Pch1) to chromatin by the cap-methyl transferase Pcm1 in fission yeast. EMBO J 26:1552–1559

    PubMed  CAS  Google Scholar 

  • Guo S, Hakimi MA, Baillat D, Chen X, Farber MJ, Klein-Szanto AJ, Cooch NS, Godwin AK, Shiekhattar R (2005) Linking transcriptional elongation and messenger RNA export to metastatic breast cancers. Cancer Res 65:3011–3016

    PubMed  CAS  Google Scholar 

  • Gwizdek C, Iglesias N, Rodriguez MS, Ossareh-Nazari B, Hobeika M, Divita G, Stutz F, Dargemont C (2006) Ubiquitin-associated domain of Mex67 synchronizes recruitment of the mRNA export machinery with transcription. Proc Natl Acad Sci U S A 103:16376–16381

    PubMed  CAS  Google Scholar 

  • Hampsey M, Reinberg D (2003) Tails of intrigue: phosphorylation of RNA polymerase II mediates histone methylation. Cell 113:429–432

    PubMed  CAS  Google Scholar 

  • Hartzog GA, Wada T, Handa H, Winston F (1998) Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev 12:357–369

    PubMed  CAS  Google Scholar 

  • He X, Khan AU, Cheng H, Pappas DL Jr, Hampsey M, Moore CL (2003) Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev 17:1030–1042

    PubMed  CAS  Google Scholar 

  • Hieb AR, Baran S, Goodrich JA, Kugel JF (2006) An 8 nt RNA triggers a rate-limiting shift of RNA polymerase II complexes into elongation. EMBO J 25:3100–3109

    PubMed  CAS  Google Scholar 

  • Hieronymus H, Yu MC, Silver PA (2004) Genome-wide mRNA surveillance is coupled to mRNA export. Genes Dev 18:2652–2662

    PubMed  CAS  Google Scholar 

  • Hosoda N, Kim YK, Lejeune F, Maquat LE (2005) CBP80 promotes interaction of Upf1 with Upf2 during nonsense-mediated mRNA decay in mammalian cells. Nat Struct Mol Biol 12:893–901

    PubMed  CAS  Google Scholar 

  • Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA: RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12:711–721

    PubMed  CAS  Google Scholar 

  • Huertas P, García-Rubio ML, Wellinger RE, Luna R, Aguilera A (2006) An hpr1 point mutation that impairs transcription and mRNP biogenesis without increasing recombination. Mol Cell Biol 26:7451–7465

    PubMed  CAS  Google Scholar 

  • Izaurralde E, Lewis J, McGuigan C, Jankowska M, Darzynkiewicz E, Mattaj IW (1994) A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78:657–668

    PubMed  CAS  Google Scholar 

  • Jimeno S, Rondón AG, Luna R, Aguilera A (2002) The yeast THO complex and mRNA export factors link RNA metabolism with transcription and genome instability. EMBO J 21:3526–3535

    PubMed  CAS  Google Scholar 

  • Jimeno S, Luna R, García-Rubio M, Aguilera A (2006) Tho1, a novel hnRNP, and Sub2 provide alternative pathways for mRNP biogenesis in yeast THO mutants. Mol Cell Biol 26:4387–4398

    PubMed  CAS  Google Scholar 

  • Kelly SM, Pabit SA, Kitchen CM, Guo P, Marfatia KA, Murphy TJ, Corbett AH, Berland KM (2007) Recognition of polyadenosine RNA by zinc finger proteins. Proc Natl Acad Sci U S A 104:12306–12311

    PubMed  CAS  Google Scholar 

  • Kim M, Ahn SH, Krogan NJ, Greenblatt JF, Buratowski S (2004a) Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J 23:354–364

    PubMed  CAS  Google Scholar 

  • Kim M, Krogan NJ, Vasiljeva L, Rando OJ, Nedea E, Greenblatt JF, Buratowski S (2004b) The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II. Nature 432:517–522

    PubMed  CAS  Google Scholar 

  • Kim Guisbert K, Duncan K, Li H, Guthrie C (2005) Functional specificity of shuttling hnRNPs revealed by genome-wide analysis of their RNA binding profiles. RNA 11:383–393

    PubMed  Google Scholar 

  • Kistler AL, Guthrie C (2001) Deletion of MUD2, the yeast homolog of U2AF65, can bypass the requirement for sub2, an essential spliceosomal ATPase. Genes Dev 15:42–49

    PubMed  CAS  Google Scholar 

  • Kohler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8:761–773

    PubMed  Google Scholar 

  • Kohler A, Pascual-Garcia P, Llopis A, Zapater M, Posas F, Hurt E, Rodriguez-Navarro S (2006) The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinylation through its interaction with Ubp8 and Sgf11. Mol Biol Cell 17:4228–4236

    PubMed  Google Scholar 

  • Komarnitsky P, Cho EJ, Buratowski S (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14:2452–2460

    PubMed  CAS  Google Scholar 

  • Krishnamurthy S, He X, Reyes-Reyes M, Moore C, Hampsey M (2004) Ssu72 is an RNA polymerase II CTD phosphatase. Mol Cell 14:387–394

    PubMed  CAS  Google Scholar 

  • Kurshakova MM, Krasnov AN, Kopytova DV, Shidlovskii YV, Nikolenko JV, Nabirochkina EN, Spehner D, Schultz P, Tora L, Georgieva SG (2007) SAGA and a novel Drosophila export complex anchor efficient transcription and mRNA export to NPC. EMBO J 26:4956–4965

    PubMed  CAS  Google Scholar 

  • Le Hir H, Gatfield D, Izaurralde E, Moore MJ (2001) The exon–exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 20:4987–4997

    PubMed  Google Scholar 

  • Lei EP, Krebber H, Silver PA (2001) Messenger RNAs are recruited for nuclear export during transcription. Genes Dev 15:1771–1782

    PubMed  CAS  Google Scholar 

  • Lei EP, Stern CA, Fahrenkrog B, Krebber H, Moy TI, Aebi U, Silver PA (2003) Sac3 is an mRNA export factor that localizes to cytoplasmic fibrils of nuclear pore complex. Mol Biol Cell 14:836–847

    PubMed  CAS  Google Scholar 

  • Li X, Manley JL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365–378

    PubMed  CAS  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    PubMed  CAS  Google Scholar 

  • Libri D, Graziani N, Saguez C, Boulay J (2001) Multiple roles for the yeast SUB2/yUAP56 gene in splicing. Genes Dev 15:36–41

    PubMed  CAS  Google Scholar 

  • Licatalosi DD, Geiger G, Minet M, Schroeder S, Cilli K, McNeil JB, Bentley DL (2002) Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol Cell 9:1101–1111

    PubMed  CAS  Google Scholar 

  • Linder P (2006) Dead-box proteins: a family affair-active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180

    PubMed  CAS  Google Scholar 

  • Luna R, Jimeno S, Marin M, Huertas P, García-Rubio M, Aguilera A (2005) Interdependence between transcription and mRNP processing and export, and its impact on genetic stability. Mol Cell 18:711–722

    PubMed  CAS  Google Scholar 

  • Luo ML, Zhou Z, Magni K, Christoforides C, Rappsilber J, Mann M, Reed R (2001) Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly. Nature 413:644–647

    PubMed  CAS  Google Scholar 

  • Luo W, Johnson AW, Bentley DL (2006) The role of Rat1 in coupling mRNA 3′-end processing to transcription termination: implications for a unified allosteric-torpedo model. Genes Dev 20:954–965

    PubMed  CAS  Google Scholar 

  • Mandal SS, Chu C, Wada T, Handa H, Shatkin AJ, Reinberg D (2004) Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc Natl Acad Sci U S A 101:7572–7577

    PubMed  CAS  Google Scholar 

  • Mason PB, Struhl K (2005) Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol Cell 17:831–840

    PubMed  CAS  Google Scholar 

  • Masuda S, Das R, Cheng H, Hurt E, Dorman N, Reed R (2005) Recruitment of the human TREX complex to mRNA during splicing. Genes Dev 19:1512–1517

    PubMed  CAS  Google Scholar 

  • Meinhart A, Cramer P (2004) Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430:223–226

    PubMed  CAS  Google Scholar 

  • Mendjan S, Taipale M, Kind J, Holz H, Gebhardt P, Schelder M, Vermeulen M, Buscaino A, Duncan K, Mueller J, Wilm M, Stunnenberg HG, Saumweber H, Akhtar A (2006) Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol Cell 21:811–823

    PubMed  CAS  Google Scholar 

  • Menon BB, Sarma NJ, Pasula S, Deminoff SJ, Willis KA, Barbara KE, Andrews B, Santangelo GM (2005) Reverse recruitment: the Nup84 nuclear pore subcomplex mediates Rap1/Gcr1/Gcr2 transcriptional activation. Proc Natl Acad Sci U S A 102:5749–5754

    PubMed  CAS  Google Scholar 

  • Moore MJ, Schwartzfarb EM, Silver PA, Yu MC (2006) Differential recruitment of the splicing machinery during transcription predicts genome-wide patterns of mRNA splicing. Mol Cell 24:903–915

    PubMed  CAS  Google Scholar 

  • Moteki S, Price D (2002) Functional coupling of capping and transcription of mRNA. Mol Cell 10:599–609

    PubMed  CAS  Google Scholar 

  • Muse GW, Gilchrist DA, Nechaev S, Shah R, Parker JS, Grissom SF, Zeitlinger J, Adelman K (2007) RNA polymerase is poised for activation across the genome. Nat Genet 39:1507–1511

    PubMed  CAS  Google Scholar 

  • Myers LC, Lacomis L, Erdjument-Bromage H, Tempst P (2002) The yeast capping enzyme represses RNA polymerase II transcription. Mol Cell 10:883–894

    PubMed  CAS  Google Scholar 

  • Nedea E, He X, Kim M, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J (2003) Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J Biol Chem 278:33000–33010

    PubMed  CAS  Google Scholar 

  • O’Sullivan JM, Tan-Wong SM, Morillon A, Lee B, Coles J, Mellor J, Proudfoot NJ (2004) Gene loops juxtapose promoters and terminators in yeast. Nat Genet 36:1014–1018

    PubMed  CAS  Google Scholar 

  • Pei Y, Schwer B, Shuman S (2003) Interactions between fission yeast Cdk9, its cyclin partner Pch1, and mRNA capping enzyme Pct1 suggest an elongation checkpoint for mRNA quality control. J Biol Chem 278:7180–7188

    PubMed  CAS  Google Scholar 

  • Peterlin BM, Price DH (2006) Controlling the elongation phase of transcription with P-TEFb. Mol Cell 23:297–305

    PubMed  CAS  Google Scholar 

  • Phatnani HP, Greenleaf AL (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev 20:2922–2936

    PubMed  CAS  Google Scholar 

  • Pokholok DK, Hannett NM, Young RA (2002) Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol Cell 9:799–809

    PubMed  CAS  Google Scholar 

  • Ragoczy T, Bender MA, Telling A, Byron R, Groudine M (2006) The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev 20:1447–1457

    PubMed  CAS  Google Scholar 

  • Rasmussen EB, Lis JT (1993) In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. Proc Natl Acad Sci U S A 90:7923–7927

    PubMed  CAS  Google Scholar 

  • Rehwinkel J, Herold A, Gari K, Kocher T, Rode M, Ciccarelli FL, Wilm M, Izaurralde E (2004) Genome-wide analysis of mRNAs regulated by the THO complex in Drosophila melanogaster. Nat Struct Mol Biol 11:558–566

    PubMed  CAS  Google Scholar 

  • Reinberg D, Sims RJ 3rd (2006) de FACTo nucleosome dynamics. J Biol Chem 281:23297–23301

    PubMed  CAS  Google Scholar 

  • Rodriguez MS, Dargemont C, Stutz F (2004) Nuclear export of RNA. Biol Cell 96:639–655

    PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro S, Fischer T, Luo MJ, Antunez O, Brettschneider S, Lechner J, Perez-Ortin JE, Reed R, Hurt E (2004) Sus1, a functional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell 116:75–86

    PubMed  CAS  Google Scholar 

  • Rondón AG, García-Rubio M, Gonzalez-Barrera S, Aguilera A (2003a) Molecular evidence for a positive role of Spt4 in transcription elongation. EMBO J 22:612–620

    PubMed  Google Scholar 

  • Rondón AG, Jimeno S, García-Rubio M, Aguilera A (2003b) Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 278:39037–39043

    PubMed  Google Scholar 

  • Rosonina E, Kaneko S, Manley JL (2006) Terminating the transcript: breaking up is hard to do. Genes Dev 20:1050–1056

    PubMed  CAS  Google Scholar 

  • Saguez C, Olesen JR, Jensen TH (2005) Formation of export-competent mRNP: escaping nuclear destruction. Curr Opin Cell Biol 17:287–293

    PubMed  CAS  Google Scholar 

  • Saunders A, Core LJ, Lis JT (2006) Breaking barriers to transcription elongation. Nat Rev Mol Cell Biol 7:557–567

    PubMed  CAS  Google Scholar 

  • Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli UK (2006) Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell 21:379–391

    PubMed  CAS  Google Scholar 

  • Schneider R, Grosschedl R (2007) Dynamics and interplay of nuclear architecture, genome organization, and gene expression. Genes Dev 21:3027–3043

    PubMed  CAS  Google Scholar 

  • Schroeder SC, Schwer B, Shuman S, Bentley D (2000) Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 14:2435–2440

    PubMed  CAS  Google Scholar 

  • Schroeder SC, Zorio DA, Schwer B, Shuman S, Bentley D (2004) A function of yeast mRNA cap methyltransferase, Abd1, in transcription by RNA polymerase II. Mol Cell 13:377–387

    PubMed  CAS  Google Scholar 

  • Segref A, Sharma K, Doye V, Hellwig A, Huber J, Luhrmann R, Hurt E (1997) Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A) RNA and nuclear pores. EMBO J 16:3256–3271

    PubMed  CAS  Google Scholar 

  • Shi H, Cordin O, Minder CM, Linder P, Xu RM (2004) Crystal structure of the human ATP-dependent splicing and export factor UAP56. Proc Natl Acad Sci U S A 101:17628–17633

    PubMed  CAS  Google Scholar 

  • Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    PubMed  CAS  Google Scholar 

  • Sims RJ 3rd, Belotserkovskaya R, Reinberg D (2004a) Elongation by RNA polymerase II: the short and long of it. Genes Dev 18:2437–2468

    PubMed  CAS  Google Scholar 

  • Sims RJ 3rd, Mandal SS, Reinberg D (2004b) Recent highlights of RNA-polymerase-II-mediated transcription. Curr Opin Cell Biol 16:263–271

    PubMed  CAS  Google Scholar 

  • Singh BN, Hampsey M (2007) A transcription-independent role for TFIIB in gene looping. Mol Cell 27:806–816

    PubMed  CAS  Google Scholar 

  • Sommer P, Nehrbass U (2005) Quality control of messenger ribonucleoprotein particles in the nucleus and at the pore. Curr Opin Cell Biol 17:294–301

    PubMed  CAS  Google Scholar 

  • Spector DL (2003) The dynamics of chromosome organization and gene regulation. Annu Rev Biochem 72:573–608

    PubMed  CAS  Google Scholar 

  • Steinmetz EJ, Brow DA (2003) Ssu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription. Mol Cell Biol 23:6339–6349

    PubMed  CAS  Google Scholar 

  • Strasser K, Hurt E (2001) Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413:648–652

    PubMed  CAS  Google Scholar 

  • Strasser K, Masuda S, Mason P, Pfannstiel J, Oppizzi M, Rodriguez-Navarro S, Rondón AG, Aguilera A, Struhl K, Reed R, Hurt E (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417:304–308

    PubMed  Google Scholar 

  • Stutz F, Bachi A, Doerks T, Braun IC, Seraphin B, Wilm M, Bork P, Izaurralde E (2000) REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6:638–650

    PubMed  CAS  Google Scholar 

  • Svejstrup JQ (2007) Elongator complex: how many roles does it play? Curr Opin Cell Biol 19:331–336

    PubMed  CAS  Google Scholar 

  • Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser SM (2006) Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature 441:774–778

    PubMed  CAS  Google Scholar 

  • Tran EJ, Zhou Y, Corbett AH, Wente SR (2007) The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol Cell 28:850–859

    PubMed  CAS  Google Scholar 

  • Vinciguerra P, Iglesias N, Camblong J, Zenklusen D, Stutz F (2005) Perinuclear Mlp proteins downregulate gene expression in response to a defect in mRNA export. EMBO J 24:813–823

    PubMed  CAS  Google Scholar 

  • Voynov V, Verstrepen KJ, Jansen A, Runner VM, Buratowski S, Fink GR (2006) Genes with internal repeats require the THO complex for transcription. Proc Natl Acad Sci U S A 103:14423–14428

    PubMed  CAS  Google Scholar 

  • Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H (1998) DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 12:343–356

    PubMed  CAS  Google Scholar 

  • Wellinger RE, Prado F, Aguilera A (2006) Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 26:3327–3334

    PubMed  CAS  Google Scholar 

  • West S, Gromak N, Proudfoot NJ (2004) Human 5′→ 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 432:522–525

    PubMed  CAS  Google Scholar 

  • Wong CM, Qiu H, Hu C, Dong J, Hinnebusch AG (2007) Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites. Mol Cell Biol 27:6520–6531

    PubMed  CAS  Google Scholar 

  • Wood A, Shilatifard A (2006) Bur1/Bur2 and the Ctk complex in yeast: the split personality of mammalian P-TEFb. Cell Cycle 5:1066–1068

    PubMed  CAS  Google Scholar 

  • Wu CH, Yamaguchi Y, Benjamin LR, Horvat-Gordon M, Washinsky J, Enerly E, Larsson J, Lambertsson A, Handa H, Gilmour D (2003) NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev 17:1402–1414

    PubMed  CAS  Google Scholar 

  • Yamada T, Yamaguchi Y, Inukai N, Okamoto S, Mura T, Handa H (2006) P-TEFb-mediated phosphorylation of hSpt5 C-terminal repeats is critical for processive transcription elongation. Mol Cell 21:227–237

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Takagi T, Wada T, Yano K, Furuya A, Sugimoto S, Hasegawa J, Handa H (1999) NELF, a multisubunit complex containing RD, cooperates with DSIF to repress RNA polymerase II elongation. Cell 97:41–51

    PubMed  CAS  Google Scholar 

  • Yoh SM, Cho H, Pickle L, Evans RM, Jones KA (2007) The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes Dev 21:160–174

    PubMed  CAS  Google Scholar 

  • Zeitlinger J, Stark A, Kellis M, Hong JW, Nechaev S, Adelman K, Levine M, Young RA (2007) RNA polymerase stalling at developmental control genes in the Drosophila melanogaster embryo. Nat Genet 39:1512–1516

    PubMed  CAS  Google Scholar 

  • Zenklusen D, Vinciguerra P, Wyss JC, Stutz F (2002) Stable mRNP formation and export require cotranscriptional recruitment of the mRNA export factors Yra1p and Sub2p by Hpr1p. Mol Cell Biol 22:8241–8253

    PubMed  CAS  Google Scholar 

  • Zhang Z, Gilmour DS (2006) Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol Cell 21:65–74

    PubMed  CAS  Google Scholar 

  • Zhang Z, Fu J, Gilmour DS (2005) CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev 19:1572–1580

    PubMed  CAS  Google Scholar 

  • Zhao Y, Lang G, Ito S, Bonnet J, Metzger E, Sawatsubashi S, Suzuki E, Le Guezennec X, Stunnenberg HG, Krasnov A, Georgieva SG, Schule R, Takeyama K, Kato S, Tora L, Devys D (2008) A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 29:92–101

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank J.C. Reyes for critical reading of the manuscript and D. Haun for style supervision. Research in A.A.’s lab is funded by grants from the Spanish Ministry of Science and Education (BFU2006-05260 and Consolider Ingenio 2010 CDS2007-0015) and from the Junta de Andalucia (CVI102 and CVI624).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Aguilera.

Additional information

Communicated by E.A. Nigg

Rosa Luna and Hélène Gaillard contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luna, R., Gaillard, H., González-Aguilera, C. et al. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma 117, 319–331 (2008). https://doi.org/10.1007/s00412-008-0158-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-008-0158-4

Keywords

Navigation