Skip to main content

Advertisement

Log in

Retinal alterations in mild cognitive impairment and Alzheimer’s disease: an optical coherence tomography study

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Retinal nerve fiber layer thickness (RNFL) measured by means of Optical Coherence Tomography (OCT) has been used as a marker not only of ophthalmologic diseases but also of neurodegenerative diseases such as Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The purpose of this work was to demonstrate that patients with amnestic MCI show an intermediate RNFL thickness between normality and AD, and a macular volume and thickness as well. In a cross-sectional study we consecutively recruited 18 patients with AD, 21 with MCI, and 41 healthy controls. OCT was performed in all of them to measure circumpapillary RNFL thickness in µm, as well as macular volume and thickness. In the analysis of variance we saw that RNFL was thinner in MCI patients compared with controls, and it was also thinner in AD patients compared with MCI patients and controls. With regard to the macular measurements in mm3, MCI patients had the greatest macular volume in comparison with AD patients and controls. In turn the controls had greater macular volume than AD patients. The decreased RNFL thickness in MCI and AD patients suggests loss of retinal neurons and their axons. The increased thickness and macular volume have never been reported before in aMCI. This finding could be explained by inflammation and/or gliosis in early stages of AD. OCT could be a useful marker of AD for early detection and monitoring progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Prince M, Brice R, Ferry R. World Alzheimer report 201 Illinois: Alzheimer Disease Intenational, 201 Available at: http:www.alz.co.uk/worldreport2011, Accessed 11 March 2014

  2. Morris JM, Nagy Z (2004) Alzheimer’s disease in the neuropathology of dementia. Cambridge University Press, UK, pp 161–206

    Book  Google Scholar 

  3. Hinton DR, Sadun AA, Blanks JC, Miller CA (1986) Optic-nerve degeneration in Alzheimer’s disease. N Engl J Med 315:485–487

    Article  CAS  PubMed  Google Scholar 

  4. Hof PR, Vogt BA, Bouras C, Morrison JH (1997) Atypical form of Alzheimer’s disease with prominent posterior cortical atrophy: a review of lesion distribution and circuit disconnection in cortical visual pathways. Vision Res 37:3609–3625

    Article  CAS  PubMed  Google Scholar 

  5. Blanks JC, Torigoe Y, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease. I. Ganglion cell loss in foveal/parafoveal retina. Neurobiol Aging 17:377–384

    Article  CAS  PubMed  Google Scholar 

  6. Trick GL, Trick LR, Morris P, Wolf M (1995) Visual field loss in senile dementia of the Alzheimer’s type. Neurology 45:68–74

    Article  CAS  PubMed  Google Scholar 

  7. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E (1999) Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 56:303–308

    Article  CAS  PubMed  Google Scholar 

  8. Levey A, Lah J, Goldstein F, Steenland K, Bliwise D (2006) Mild cognitive impairment: an opportunity to identify patients at high risk for progression to Alzheimer’s disease. Clin Ther 28:991–1001

    Article  PubMed  Google Scholar 

  9. Werner P, Korzcyn AD (2008) Mild cognitive impairment: conceptual, assessment, ethical, and social issues. Clin Interv Aging 3:413–420

    PubMed Central  PubMed  Google Scholar 

  10. Winblad B, Palmer K, Kivipelto M, Jelic V, Fratiglioni L, Wahlund LO, Nordberg A, Bäckman L, Albert M, Almkvist O, Arai H, Basun H, Blennow K, de Leon M, DeCarli C, Erkinjuntti T, Giacobini E, Graff C, Hardy J, Jack C, Jorm A, Ritchie K, van Duijn C, Visser P, Petersen RC (2004) Mild cognitive impairment—beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med 256:240–246

    Article  CAS  PubMed  Google Scholar 

  11. Petersen RC, Roberts RO, Knopman DS, Boeve BF, Geda YE, Ivnik RJ, Smith GE, Jack CR Jr (2009) Mild cognitive impairment: ten years later. Arch Neurol 66:1447–1455

    Article  PubMed Central  PubMed  Google Scholar 

  12. Petersen RC, Stevens JC, Ganguli M, Tangalos EG, Cummings JL, DeKosky ST (2001) Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 56:1133–1142

    Article  CAS  PubMed  Google Scholar 

  13. Morris JC, Cummings J (2005) Mild cognitive impairment (MCI) represents early-stage Alzheimer’s disease. J Alzheimers Dis 7:235–239

    PubMed  Google Scholar 

  14. Makersbery WR, Schmitt FA, Kryscio RJ, Davis DG, Smith CD, Wekstein DR (2006) Neuropathologic substrate of mild cognitive impairment. Arch Neurol 63:38–46

    Article  Google Scholar 

  15. Ikram MK, Cheung CY, Wong TY, Chen CP (2012) Retinal pathology as biomarker for cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 83:917–922

    Article  PubMed  Google Scholar 

  16. Jaffe G-J, Caprioli J (2004) Optical coherence tomography to detect and manage retinal disease and glaucoma. Am J Ophthalmol 137:156–169

    Article  PubMed  Google Scholar 

  17. Hassenstein A, Spital G, Scholz F, Henschel A, Richard G, Pauleikhoff D (2009) Optical coherence tomography for macula diagnostics. Review of methods and standardized application concentrating on diagnostic and therapy control of age-related macula degeneration. Ophthalmologe 106:116–126

    Article  CAS  PubMed  Google Scholar 

  18. Ratchford JN, Quigg ME, Conger A, Frohman T, Frohman E, Balcer LJ, Calabresi PA, Kerr DA (2009) Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology 73:302–308

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Hajee M-E, March W-F, Lazzaro D-R et al (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127:737–741

    Article  PubMed  Google Scholar 

  20. Ascaso FJ, Cabezón L, Quintanilla MA, Gutiérrez-Galve L, López-Antón R, Cristóbal JA, Lobo A (2010) Retinal nerve fiber layer thickness mesured by optical coherence tomography in patients with schizophrenia: a short report. Eur J Psychiatry 24:227–235

    Article  Google Scholar 

  21. Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci M-G, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin Neurophysiol 112:1860–1867

    Article  CAS  PubMed  Google Scholar 

  22. Iseri P-K, Altinas O, Tokay T, Yuksel N (2006) Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 26:18–24

    Article  PubMed  Google Scholar 

  23. Berisha F, Feke G-T, Trempe C-L, McMeel J-W, Schepens C-L (2007) Retinal abnormalities in early Alzheimer´s disease. Invest Ophthalmol Vis Sci 48:2285–2289

    Article  PubMed  Google Scholar 

  24. Paquet C, Boissonnot M, Roger F, Dighiero P, Gil R, Hugon J (2007) Abnormal retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 420:97–99

    Article  CAS  PubMed  Google Scholar 

  25. Yu JC, Feng IF, Xiang Y, Huanq JH, Savini G, Parisi V, Yang WJ, Fu Xa (2014) Retinal fiber nerve layer thickness changes in Parkinson disease: a meta-analysis. PLoS One 9:e85718

    Article  PubMed Central  PubMed  Google Scholar 

  26. Moreno-Ramos T, Benito-León J, Villarejo A, Bermejo-Pareja F (2013) Retinal nerve fiber layer thinning in dementia associated with Parkinson’s disease, dementia with Lewy bodies, and Alzheimer’s disease. J Alzheimers Dis 34:659–664

    CAS  PubMed  Google Scholar 

  27. Blanks JC, Schmidt SY, Torigoe Y, Porrello KV, Hinton DR, Blanks RH (1996) Retinal pathology in Alzheimer’s disease II. Regional neuron loss and glial changes in GCL. Neurobiol Aging 17:385–395

    Article  CAS  PubMed  Google Scholar 

  28. Lamirel C, Newman N, Biousse V (2009) The use of optical coherence tomography in Neurology. Rev Neurol Dis 6(4):e105–e120

    PubMed  Google Scholar 

  29. Sakata L-M, Deleon-Ortega J, Sakata V, Girkin C-A (2009) Optical coherence tomography of the retina and optic nerve- a review. Clin Exp Ophthalmol 37:90–99

    Article  Google Scholar 

  30. Streit WJ, Xue QS, Braak H, Del Tredici K (2014) Presence of severe neuroinflammation does not intensify neurofibrillary degeneration in human brain. Glia 62(1):96–105

    Article  PubMed  Google Scholar 

  31. Lobo A, Saz P, Marcos G et al (1999) Revalidation and standardization of the cognition mini-exam (first Spanish version of the Mini-Mental Status Examination) in the general geriatric population. Med Clin (Barc) 112:767–774

    CAS  Google Scholar 

  32. Katz S, Ford AB, Moskowitz RW et al (1963) Studies of illness in the aged. The index of ADL: a standardized measure of biological and psychosocial function. JAMA 185:914–919

    Article  CAS  PubMed  Google Scholar 

  33. Alvarez M, De Alaiz AT, Brun E, Cabañeros JJ, Calzon M, Cosio I (1992) Capacidad funcional de pacientes mayores de 65 años, según el índice de Katz. Fiabilidad del método. Aten Primaria 10:812–816

    Google Scholar 

  34. Lawton MP, Brody EM (1969) Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist 9:179–186

    Article  CAS  PubMed  Google Scholar 

  35. Tárraga LL (1995) Evaluación del deterioro cognitivo y functional de la demencia. Escalas de mayor interés en la Atención Primaria. In: Boada M, Tárraga LL (eds) El médico ante la demencia y su entorno, Módulo 1. Bayer S.A, Barcelona, pp 37–50

    Google Scholar 

  36. Pinheiro JC, Bates DM (2009) Mixed-effects models in S and S-PLUS, 2nd edn. Springer, New York

    Google Scholar 

  37. Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2:605–613

    Article  CAS  PubMed  Google Scholar 

  38. Galasko D (2005) Biomarkers for Alzheimer’s diseased clinical needs and application. J Alzheimers Dis 8:339–346

    CAS  PubMed  Google Scholar 

  39. He XF, Liu YT, Peng C, Zhang F, Zhuang S, Zhang JS (2012) Optical coherence tomography assessed retinal nerve fiber layer thickness in patients with Alzheimer’s disease: a meta-analysis. Int J Ophthalmol 5:401–405

    PubMed Central  PubMed  Google Scholar 

  40. Frohman E-M, Fujimoto J-G, Frohman T-C et al (2008) Optical coherence tomography: a window into the mechanisms of multiple sclerosis. Nat Clin Pract Neurol 4:664–675

    Article  PubMed Central  PubMed  Google Scholar 

  41. Deng YL, Chen Y, Xie LQ, Wang G, Xu Wei, Tang YD, Wang Y, Chen SD (2009) Morphological change of retina in mild Alzheimer’s disease. 8: 397–400

  42. Chi Y, Wang YH, Yang L (2010) The investigation of retinal nerve fiber loss in Alzheimer’s disease. 46: 134–139

  43. Kesler A, Vakhapova V, Korczyn AD, Naftaliev E, Neudorfer M (2011) Retinal thickness in patients with mild cognitive impairment and Alzheimer’s disease. Clin Neurol Neurosurg 113:523–526

    Article  PubMed  Google Scholar 

  44. Kirbas S, Turkyilmaz K, Anlar O, Tufekci A, Durmus M (2013) Retinal nerve fiber layer thickness in patients with Alzheimer disease. J Neuroophthalmol 33:58–61

    Article  PubMed  Google Scholar 

  45. Schmidtke K, Hermeneit S (2008) High rate of conversion to Alzheimer´s disease in a cohort of amnestic MCI patients. Int Psychogeriatr 20:96–108

    Article  PubMed  Google Scholar 

  46. Gramer E, Dirmeyer M (1998) Optical coherence tomography (OCT) to measure nerve fiber layer thickness in normal eyes. Invest Ophthalmol Vis Sci 39(4):S933 (abstract)

    Google Scholar 

  47. Heneka MT, Rodriguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    Article  CAS  PubMed  Google Scholar 

  48. Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ (2010) Astrocytes in Alzheimer’s disease. Neurotherapeutics 7:399–412

    Article  CAS  PubMed  Google Scholar 

  49. Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A (2007) Müller cells as players in retinal degeneration and edema. Graefe’s Arch Clin Exp Ophthalmol 245:627–636

    Article  Google Scholar 

  50. Bringmann A, Iandiev I, Pannicke T et al (2009) Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res 28:423–451

    Article  CAS  PubMed  Google Scholar 

  51. Bringmann A, Wiedemann P (2011) Müller glial cells in retinal disease. Ophthalmologica 227:1–19

    Article  PubMed  Google Scholar 

  52. Fujino Y, Delucia MW, Davies P, Dickson DW (2004) Ballooned neurones in the limbic lobe are associated with Alzheimer type pathology and lack diagnostic specificity. Neuropathol Appl Neurobiol 30:676–682

    Article  CAS  PubMed  Google Scholar 

  53. Parisi V (2003) Correlation between morphological and functional retinal impairment in patients affected by ocular hypertension, glaucoma, demyelinating optic neuritis and Alzheimer’s disease. Semin Ophthalmol 18:50–57

    PubMed  Google Scholar 

Download references

Conflicts of interest

On behalf of all authors the corresponding author declares that there are no conflicts of interest.

Ethical standard

This work was conducted in accordance with the 1964 Declaration of Helsinki and its later amendments. It was approved by the local ethical committee. All persons included in the study gave their informed consent prior their inclusion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro J. Modrego.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascaso, F.J., Cruz, N., Modrego, P.J. et al. Retinal alterations in mild cognitive impairment and Alzheimer’s disease: an optical coherence tomography study. J Neurol 261, 1522–1530 (2014). https://doi.org/10.1007/s00415-014-7374-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7374-z

Keywords

Navigation