Skip to main content
Log in

A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Simultaneous analyses of glycogen in sections with other subcellular constituents within the same section will provide detailed information on glycogen deposition and the processes involved. To date, staining protocols for quantitative glycogen analyses together with immunofluorescence in the same section are lacking. We aimed to: (1) optimise PAS staining for combination with immunofluorescence, (2) perform quantitative glycogen analyses in tissue sections, (3) evaluate the effect of section thickness on PAS-derived data and (4) examine if semiquantitative glycogen data were convertible to genuine glycogen values. Conventional PAS was successfully modified for combined use with immunofluorescence. Transmitted light microscopic examination of glycogen was successfully followed by semiquantification of glycogen using microdensitometry. Semiquantitative data correlated perfectly with glycogen content measured biochemically in the same sample (r2=0.993, P<0.001). Using a calibration curve (r2=0.945, P<0.001) derived from a custom-made external standard with incremental glycogen content, we converted the semiquantitative data to genuine glycogen values. The converted semiquantitative data were comparable with the glycogen values assessed biochemically (P=0.786). In addition we showed that for valid comparison of glycogen content between sections, thickness should remain constant. In conclusion, the novel protocol permits the combined use of PAS with immunofluorescence and shows valid conversion of data obtained by microdensitometry to genuine glycogen data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2a, b
Fig. 3a, b
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baldwin KM, Campbell PJ, Cooke DA (1977) Glycogen, lactate, and alanine changes in muscle fiber types during graded exercise. J Appl Physiol 43:288–291

    CAS  PubMed  Google Scholar 

  • Bancroft J, Stevens A (1977) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 436

  • Bijvoet AG, van de Kamp EH, Kroos MA, Ding JH, Yang BZ, Visser P, Bakker CE, et al (1998) Generalized glycogen storage and cardiomegaly in a knockout mouse model of Pompe disease. Hum Mol Genet 7:53–62

    Article  CAS  PubMed  Google Scholar 

  • Bijvoet AG, Van Hirtum H, Vermey M, Van Leenen D, Van Der Ploeg AT, Mooi WJ, Reuser AJ (1999) Pathological features of glycogen storage disease type II highlighted in the knockout mouse model. J Pathol 189:416–424

    Article  CAS  PubMed  Google Scholar 

  • Borghouts LB, Schaart G, Hesselink MKC, Keizer HA (2000) GLUT-4 expression is not consistently higher in type-1 than in type-2 fibres of rat and human vastus lateralis muscles: an immunohistochemical study. Pflugers Arch Eur J Physiol 441:351–358

    Article  CAS  Google Scholar 

  • Bussau VA, Fairchild TJ, Rao A, Steele P, Fournier PA (2002) Carbohydrate loading in human muscle: an improved 1 day protocol. Eur J Appl Physiol 87:290–295

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Lamperti C (2001) Muscle glycogenoses. Muscle Nerve 24:984–999

    Article  CAS  PubMed  Google Scholar 

  • Griffiths G (1992) Fine structure immunocytochemistry. Springer, Berlin Heidelberg New York, pp 459

  • Herman B (1998) Fluorescence microscopy. Springer, Berlin Heidelberg New York, pp 170

  • Hesselink MKC, Kuipers H, Keizer HA, Drost MR, van der Vusse GJ (1998) Acute and sustained effects of isometric and lengthening muscle contractions on high-energy phosphates and glycogen metabolism in rat tibialis anterior muscle. J Muscle Res Cell Motil 19:373–380

    Article  CAS  PubMed  Google Scholar 

  • Hesselink RP, Gorselink M, Schaart G, Wagenmakers AJ, Kamphoven J, Reuser AJ, Van Der Vusse GJ, et al (2002) Impaired performance of skeletal muscle in alpha-glucosidase knockout mice. Muscle Nerve 25:873–883

    Article  PubMed  Google Scholar 

  • Hesselink RP, Wagenmakers AJ, Drost MR, Van der Vusse GJ (2003) Lysosomal dysfunction in muscle with special reference to glycogen storage disease type II. Biochim Biophys Acta 1637:164–170

    Article  CAS  PubMed  Google Scholar 

  • Keizer HA, Kuipers H, van Kranenburg G, Geurten P (1987) Influence of liquid and solid meals on muscle glycogen resynthesis, plasma fuel hormone response, and maximal physical working capacity. Int J Sports Med 8:99–104

    CAS  PubMed  Google Scholar 

  • Keizer HA, Schaart G, Tandon NN, Glatz JF, Luiken JJ (2004) Subcellular immunolocalisation of fatty acid translocase (FAT)/CD36 in human type-1 and type-2 skeletal muscle fibres. Histochem Cell Biol 121:101–107

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi T, Yang HW, Pennybacker M, Ichihara N, Mizutani M, Van Hove JL, Chen YT (1998) Clinical and metabolic correction of Pompe disease by enzyme therapy in acid maltase-deficient quail. J Clin Invest 101:827–833

    CAS  PubMed  Google Scholar 

  • Komulainen J, Takala TES, Kuipers H, Hesselink MKC (1998) The disruption of myofibre structures in rat skeletal muscle after forced lengthening contractions. Pflugers Arch 436:735–741

    Article  CAS  PubMed  Google Scholar 

  • Marchand I, Chorneyko K, Tarnopolsky M, Hamilton S, Shearer J, Potvin J, Graham TE (2002) Quantification of subcellular glycogen in resting human muscle: granule size, number, and location. J Appl Physiol 93:1598–1607

    CAS  PubMed  Google Scholar 

  • Martiniuk F, Chen A, Donnabella V, Arvanitopoulos E, Slonim AE, Raben N, Plotz P, et al (2000) Correction of glycogen storage disease type II by enzyme replacement with a recombinant human acid maltase produced by over-expression in a CHO-DHFR(neg) cell line. Biochem Biophys Res Commun 276:917–923

    Article  CAS  PubMed  Google Scholar 

  • McManus J (1948) Histological and histochemical uses of periodic acid. Stain Technol 23:99–108

    CAS  Google Scholar 

  • Schaart G, Viebahn C, Langmann H, Ramaekers FCS (1989) Desmin and titin expression in early postimplantation mouse embryos. Development 107:585–596

    CAS  PubMed  Google Scholar 

  • Tsujino S, Kinoshita N, Tashiro T, Ikeda K, Ichihara N, Kikuchi H, Hagiwara Y, et al (1998) Adenovirus-mediated transfer of human acid maltase gene reduces glycogen accumulation in skeletal muscle of Japanese quail with acid maltase deficiency. Hum Gene Ther 9:1609–1616

    CAS  PubMed  Google Scholar 

  • Van den Hout JM, Reuser AJ, de Klerk JB, Arts WF, Smeitink JA, Van der Ploeg AT (2001) Enzyme therapy for Pompe disease with recombinant human alpha-glucosidase from rabbit milk. J Inherit Metab Dis 24:266–274

    Article  PubMed  Google Scholar 

  • van der Laarse WJ, van Noort P, Diegenbach PC (1992) Calibration of quantitative histochemical methods: estimation of glycogen content of muscle fibers using the PAS reaction. Biotech Histochem 67:303–308

    PubMed  Google Scholar 

  • Vollestad NK, Vaage O, Hermansen L (1984) Muscle glycogen depletion patterns in type I and subgroups of type II fibres during prolonged severe exercise in man. Acta Physiol Scand 122:433–441

    CAS  PubMed  Google Scholar 

  • Zehnder M, Muelli M, Buchli R, Kuehne G, Boutellier U (2004) Further glycogen decrease during early recovery after eccentric exercise despite a high carbohydrate intake. Eur J Nutr 43:148–159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The antibodies referred to as 9D10, 2E8, N2.261 and A4.840 used in the present study were obtained from the Developmental Studies Hybridoma Bank, developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, IA 52242, USA. The research of Dr. R.P. Hesselink was supported by a research grant from the Prinses Beatrix Fonds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthijs K. C. Hesselink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaart, G., Hesselink, R.P., Keizer, H.A. et al. A modified PAS stain combined with immunofluorescence for quantitative analyses of glycogen in muscle sections. Histochem Cell Biol 122, 161–169 (2004). https://doi.org/10.1007/s00418-004-0690-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-004-0690-0

Keywords

Navigation