Skip to main content
Log in

Expression of Snail is associated with myofibroblast phenotype development in oral squamous cell carcinoma

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Snail is a regulator of epithelial–mesenchymal transition (EMT) and considered crucial to carcinoma metastasis, myofibroblast transdifferentiation, and fibroblast activation. To investigate the role of Snail in oral squamous cell carcinoma (OSCC), its immunohistochemical expression was analysed in 129 OSCC samples and correlated to nodal metastasis, histological grade, E-cadherin, and alpha smooth-muscle-actin (αSMA). The results were compared to findings in 23 basal cell carcinomas (BCC). Additionally, the influence of TGFβ1 and EGF on Snail, E-cadherin, vimentin, and αSMA expression was analysed in two OSCC cell lines. As a result, Snail-positive cells were mainly found in the stroma of the OSCC invasive front without statistically significant correlation to histological grade or nodal metastasis. Snail was co-localised to αSMA but not to E-cadherin or cytokeratin and showed a significant correlation to the loss of membranous E-cadherin. All BCCs were Snail negative. In OSCC culture, the growth-factor-mediated EMT-like phenomenon was accompanied by αSMA down-regulation. In summary, Snail expression in OSCC is a stromal phenomenon associated with the myofibroblast phenotype and not related to growth-factor-mediated transdifferentiation of the carcinoma cells themselves. Consequently, Snail immunohistochemistry cannot contribute to the prediction of the metastatic potential. Furthermore, stromal Snail expression is suggested to be the result of mutual paracrine interaction of fibro-/myofibroblasts and dedifferentiated carcinoma cells leading to the generation of a special type of carcinoma-associated fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barnes L, Eveson JW, Reichart PA, Sidransky D (2005) Pathology and genetics of head and neck tumours (World Health Organization Classification of Tumours). IARC Press, Lyon

    Google Scholar 

  • Barth PJ, Ebrahimsade S, Ramaswamy A, Moll R (2002) CD34+ fibrocytes in invasive ductal carcinomas, ductal carcinoma in situ, and benign breast lesions. Virchows Arch 440:298–303

    Article  PubMed  CAS  Google Scholar 

  • Barth PJ, Schenk zu Schweinsberg T, Ramaswamy A, Moll R (2004) CD34+ fibrocytes, α-smooth muscle antigen-positive myofibroblasts, and CD117 expression in the stroma of invasive squamous cell carcinomas of the oral cavity, pharynx, and larynx. Virchows Arch 444:231–234

    Article  PubMed  CAS  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J, Garcia De Hereros A (2000) The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2:84–89

    Article  PubMed  CAS  Google Scholar 

  • Berndt A, Hyckel P, Könneker A, Katenkamp D, Kosmehl H (1997) Oral squamous cell carcinoma invasion is associated with a laminin-5 matrix re-organization but independent of basement membrane hemidesmosome formation. Clues from an in vitro model. Invasion Metastasis 17:251–258

    PubMed  CAS  Google Scholar 

  • Berndt A, Borsi L, Hyckel P, Kosmehl H (2001) Fibrillary co-deposition of laminin-5 and large unspliced tenascin-C in the invasive front of oral squamous cell carcinoma in vivo and in vitro. J Cancer Res Clin Oncol 127:286–292

    Article  PubMed  CAS  Google Scholar 

  • Blanco MJ, Moreno-Bueno G, Sartio D, Locasicio A, Cano A, Palacios J, Nieto MA (2002) Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21:3241–3246

    Article  PubMed  CAS  Google Scholar 

  • Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A (2003) The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 116:499–511

    Article  PubMed  CAS  Google Scholar 

  • Boutet A, Esteban MA, Maxwell PH, Nieto MA (2007) Reactivation of Snail genes in renal fibrosis and carcinomas. A process of reversed embryogenesis? Cell Cycle 6:638–642

    PubMed  CAS  Google Scholar 

  • Bryne M, Koppang HS, Lilleng R, Kjaerheim A (1992) Malignancy grading of the deep invasive margins of oral squamous cell carcinomas has high prognostic value. J Pathol 166:375–381

    Article  PubMed  CAS  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA (2000) The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2:76–83

    Article  PubMed  CAS  Google Scholar 

  • Daly AJ, McIlreavey L, Irwin CR (2008) Regulation of HGF and SDF-1 expression by oral fibroblasts—implications for invasion of oral cancer. Oral Oncol 44:646–651

    Article  PubMed  CAS  Google Scholar 

  • De Rosa G, Barra E, Guarino M, Staibano S, Donofrio V, Boscaino A (1994) Fibronectin, laminin, type IV collagen distribution, and myofibroblastic stromal reaction in aggressive and nonaggressive basal cell carcinoma. Am J Dermatopathol 16:258–267

    Article  PubMed  Google Scholar 

  • De Vries AS, Tilton RG, Mortier S, Lameire NH (2006) Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia. Nephrol Dial Transplant 21:2549–2555

    Article  Google Scholar 

  • De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    Article  PubMed  CAS  Google Scholar 

  • Franci C, Takkunen M, Dave N, Alameda F, Gómez S, Rodríguez R, Escrivà M, Montserrat-Sentís B, Baró T, Garrido M, Bonilla F, Virtanen I, García de Herreros A (2006) Expression of Snail protein in tumor–stroma interface. Oncogene 25(37):5134–5144

    PubMed  CAS  Google Scholar 

  • Franz M, Hansen T, Richter P, Borsi L, Böhmer FD, Hyckel P, Schleier P, Katenkamp D, Zardi L, Kosmehl H, Berndt A (2006) Complex formation of the laminin-5 gamma2 chain and large unspliced tenascin-C in oral squamous cell carcinoma in vitro and in situ: implications for sequential modulation of extracellular matrix in the invasive tumor front. Histochem Cell Biol 126(1):125–131

    Article  PubMed  CAS  Google Scholar 

  • Franz M, Richter P, Geyer C, Hansen T, Acuna LD, Hyckel P, Bohmer FD, Kosmehl H, Berndt A (2007) Mesenchymal cells contribute to the synthesis and deposition of the laminin-5 gamma 2 chain in the invasive front of oral squamous cell carcinoma. J Mol Histol 38(3):183–190

    Article  PubMed  CAS  Google Scholar 

  • Giannelli G, Bergamini C, Fransvea E, Sqarra C, Antonaci S (2005) Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology 129:1375–1383

    Article  PubMed  CAS  Google Scholar 

  • Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J (2002) Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. J Biol Chem 277:39209–39216

    Article  PubMed  CAS  Google Scholar 

  • Higashikawa K, Yoneda S, Taki M, Shigeishi H, Ono S, Tobiume K, Kamata N (2008) Gene expression profiling to identify genes associated with high-invasiveness in human squamous cell carcinoma with epithelial-to-mesenchymal transition. Cancer Lett 264:256–264

    Article  PubMed  CAS  Google Scholar 

  • Hung SC, Kuo PY, Chang CF, Chen TH, Ho LL (2006) Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells. Cell Tissue Res 324:457–466

    Article  PubMed  CAS  Google Scholar 

  • Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    PubMed  CAS  Google Scholar 

  • Jin X, Li J, Li Z, Li Y (2001) Expression of transforming growth factor beta (TGF-beta) subtypes in oral squamous cell carcinoma. Hua Xi Kou Qiang Yi Xue Za Zhi 19:377–379

    PubMed  CAS  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial–mesenchymal transition and its implication for fibrosis. J Clin Invest 112:1776–1784

    PubMed  CAS  Google Scholar 

  • Kellermann MG, Sobral LM, da Silva SD, Zecchin KG, Graner E, Lopes MA, Kowalski LP, Coletta RD (2008) Mutual paracrine effects of oral squamous cell carcinoma cells and normal oral fibroblasts: induction of fibroblast to myofibroblast transdifferentiation and modulation of tumor cell proliferation. Oral Oncol 44:509–517

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signalling, development, and disease. J Cell Biol 172:973–981

    Article  PubMed  CAS  Google Scholar 

  • Lewis MP, Lygoe KA, Nystrom ML, Anderson WP, Speight PM, Marshall JF, Thomas GJ (2004) Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer 90(4):822–832

    Article  PubMed  CAS  Google Scholar 

  • Maeda G, Chiba T, Okazaki M, Satoh T, Taya Y, Aoba T, Kato K, Kawashiri S, Imai K (2005) Expression of SIP1 in oral squamous cell carcinomas: implications for E-cadherin expression and tumour progression. Int J Oncol 27:1535–1541

    PubMed  CAS  Google Scholar 

  • Meindl-Beinker NM, Dooley S (2008) Transforming growth factor-beta and hepatocyte transdifferentiation in liver fibrosis. J Gastroenterol Hepatol 23(Suppl 1):S122–S127

    Article  PubMed  CAS  Google Scholar 

  • Natsugoe S, Uchikado Y, Okumura H, Matsumoto M, Setoyama T, Tamotsu K, Kita Y, Sakamoto A, Owaki T, Ishigami S, Aikou T (2007) Snail plays a key role in E-cadherin-preserved esophageal squamous cell carcinoma. Oncol Rep 17:517–523

    PubMed  CAS  Google Scholar 

  • Onoue T, Uchida D, Bequm NM, Tomizuka Y, Yoshida H, Sato M (2006) Epithelial-mesenchymal transition induced by the stromal cell-derived factor-1/CXCR4 system in oral squamous cell carcinoma cells. Int J Oncol 29:1133–1138

    PubMed  CAS  Google Scholar 

  • Peiro S, Escriva M, Puig I, Barberà MJ, Dave N, Herranz N, Larriba MJ, Takkunen M, Francí C, Muñoz A, Virtanen I, Baulida J, García de Herreros A (2006) Snail 1 transcriptional repressor binds to its own promoter and controls its expression. Nucleic Acids Res 34:2077–2084

    Article  PubMed  CAS  Google Scholar 

  • Pena C, Garcia JM, Silva J, García V, Rodríguez R, Alonso I, Millán I, Salas C, de Herreros AG, Muñoz A, Bonilla F (2005) E-cadherin and vitamin D receptor regulation by Snail and Zeb1 in colon cancer: clinicopathological correlations. Hum Mol Genet 14:3361–3370

    Article  PubMed  CAS  Google Scholar 

  • Petersen OW, Lind Nielsen H, Gudjonsson T, Villadseu R, Rønnov-Jessen L, Bissell ML (2001) The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res 3(4):213–217

    Article  PubMed  CAS  Google Scholar 

  • Petersen OW, Nielsen H, Gudjonsson T, Villadsen R, Rank F, Niebuhr E, Bissell MJ, Rønnov-Jessen L (2003) Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 162:391–402

    PubMed  CAS  Google Scholar 

  • Prindull G, Zipori D (2004) Environmental guidance of normal and tumor cell plasticity: epithelial mesenchymal transitions as a paradigm. Blood 103:2892–2899

    Article  PubMed  CAS  Google Scholar 

  • Radisky DC, Kenny PA, Bissell MJ (2007) Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 101(4):830–839

    Article  PubMed  CAS  Google Scholar 

  • Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ (1995) The origin of the myofibroblast in breast cancer: recapitulation of tumor environment in culture unreveals diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 95:859–873

    Article  PubMed  CAS  Google Scholar 

  • Stuelten CH, DaCosta Byfield S, Arany PR, Karpova TS, Stetler-Stevenson WG, Roberts AB (2005) Breast cancer cells induce stromal fibroblasts to express MMP-9 via secretion of TNF-alpha and TGF-beta. J Cell Sci 118:2143–2153

    Article  PubMed  CAS  Google Scholar 

  • Sun L, Diamond ME, Ottaviano AJ, Joseph MJ, Ananthanarayan V, Munshi HG (2008) Transforming growth factor-beta 1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through Snail expression. Mol Cancer Res 6:10–20

    Article  PubMed  CAS  Google Scholar 

  • Taki M, Higashikawa K, Yoneda S, Ono S, Shigeishi H, Nagayama M, Kamata N (2008) Up-regulation of stromal cell-derived factor-1alpha and its receptor CXCR4 expression accompanied with epithelial–mesenchymal transition in human oral squamous cell carcinoma. Oncol Rep 19:993–998

    PubMed  CAS  Google Scholar 

  • Takkunen M, Grenman R, Hukkanen M, Korhonen M, Garcia de Herreros A, Virtanen I (2006) Snail-dependent and -independent epithelial–mesenchymal transition in oral squamous carcinoma cells. J Histochem Cytochem 54(11):1263–1275

    Article  PubMed  CAS  Google Scholar 

  • Takkunen M, Ainola M, Vainionpää N, Grenman R, Patarroyo M, Garcia de Herreros A, Konttinen YT, Virtanen I (2008) Epithelial–mesenchymal transition downregulates laminin a5 chain and upregulates a4 chain in oral squamous carcinoma cells. Histochem Cell Biol 130:509–525

    Article  PubMed  CAS  Google Scholar 

  • Thiery JP (2002) Epithelial–mesenchymal transition in tumour progression. Nat Rev Cancer 2:442–454

    Article  PubMed  CAS  Google Scholar 

  • Thompson LDR, Wieneke JA, Miettinen M, Heffner DK (2002) Spindle cell (sarcomatoid) carcinoma of the larynx. A clinicopathologic study of 187 cases. Am J Surg Pathol 26:153–170

    Article  PubMed  Google Scholar 

  • Wilkins-Port CE, Higgins PJ (2007) Regulation of extracellular matrix remodelling following transforming growth factor-β1/epidermal growth factor-stimulated epithelial–mesenchymal transition in human premalignant keratinocytes. Cells Tissues Organs 185:116–122

    Article  PubMed  CAS  Google Scholar 

  • Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA (2004) Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117:927–939

    Article  PubMed  CAS  Google Scholar 

  • Yanjia H, Xinchun J (2007) The role of epithelial-mesenchymal transition in oral squamous cell carcinoma and oral submucous fibrosis. Clin Chim Acta 383:51–56

    Article  PubMed  CAS  Google Scholar 

  • Yin T, Wang CY, Liu T, Thao G, Zha YH (2006) Expression of Snail and E-cadherin in pancreatic carcinoma and clinical significance thereof. Zhonghua Yi Xue Za Zhi 86:2821–2925

    PubMed  CAS  Google Scholar 

  • Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M, Hosokawa H, Nagayama M (2003) Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinoma. Int J Oncol 22:891–898

    PubMed  CAS  Google Scholar 

  • Zhang W, Alt-Holland A, Margulis A, Shamis Y, Fusenig NE, Rodeck U, Garlick JA (2006) E-cadherin loss promotes the initiation of squamous cell carcinoma invasion through modulation of integrin-mediated adhesion. J Cell Sci 119:283–291

    Article  PubMed  CAS  Google Scholar 

  • Zidar N, Gale N, Kojc N, Volavsek M, Cardesa A, Alos L, Höfler H, Blechschmidt K, Becker KF (2008) Cadherin-catenin complex and transcription factor Snail-1 in spindle cell carcinoma of the head and neck. Virchows Arch 453:267–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Susanne Bergmann, Christiane Geier, Angela Gröbner, and Katrin Schlehahn for excellent technical assistance. The study was supported by the Thuringian Ministry of Science, Research and Art (ThMWFK), and IZKF of the University Hospital Jena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Berndt.

Additional information

M. Franz and K. Spiegel have contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, M., Spiegel, K., Umbreit, C. et al. Expression of Snail is associated with myofibroblast phenotype development in oral squamous cell carcinoma. Histochem Cell Biol 131, 651–660 (2009). https://doi.org/10.1007/s00418-009-0559-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-009-0559-3

Keywords

Navigation