Skip to main content
Log in

Immunohistochemical analyses point to epidermal origin of human Merkel cells

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Merkel cells, the neurosecretory cells of skin, are essential for light-touch responses and may probably fulfill additional functions. Whether these cells derive from an epidermal or a neural lineage has been a matter of dispute for a long time. In mice, recent studies have clearly demonstrated an epidermal origin of Merkel cells. Given the differences in Merkel cell distribution between human and murine skin, it is, however, unclear whether the same holds true for human Merkel cells. We therefore attempted to gain insight into the human Merkel cell lineage by co-immunodetection of the Merkel cell marker protein cytokeratin 20 (CK20) with various proteins known to be expressed either in epidermal or in neural stem cells of the skin. Neither Sox10 nor Pax3, both established markers of the neural crest lineage, exhibited any cell co-labeling with CK20. By contrast, β1 integrin, known to be enriched in epidermal stem cells, was found in nearly 70 % of interfollicular epidermal and 25 % of follicular Merkel cells. Moreover, LRIG1, also enriched in epidermal stem cells, displayed significant co-immunolabeling with CK20 as well (approximately 20 % in the interfollicular epidermis and 7 % in the hair follicle, respectively). Further epidermal markers were detected in sporadic Merkel cells. Cells co-expressing CK20 with epidermal markers may represent a transitory state between stem cells and differentiated cells. β1 integrin is probably also synthesized by a large subset of mature Merkel cells. Summarizing, our data suggest that human Merkel cells may originate from epidermal rather than neural progenitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambler CA, Määttä A (2009) Epidermal stem cells: location, potential and contribution to cancer. J Pathol 217:206–216

    Article  CAS  PubMed  Google Scholar 

  • Bardot ES, Valdes VJ, Zhang J, Perdigoto CN, Nicolis S, Hearn SA, Silva JM, Ezhkova E (2013) Polycomb subunits Ezh1 and Ezh2 regulate the Merkel cell differentiation program in skin stem cells. EMBO J 32:1990–2000

    Article  CAS  PubMed  Google Scholar 

  • Boulais N, Misery L (2007) Merkel cells. J Am Acad Dermatol 57:147–165

    Article  PubMed  Google Scholar 

  • Calder KB, Smoller BR (2010) New insights into merkel cell carcinoma. Adv Anat Pathol 17:155–161

    Article  PubMed  Google Scholar 

  • Clewes O, Narytnyk A, Gillinder KR, Loughney AD, Murdoch AP, Sieber-Blum M (2011) Human epidermal neural crest stem cells (hEPI-NCSC)-characterization and directed differentiation into osteocytes and melanocytes. Stem Cell Rev 7:799–814

    Article  PubMed Central  PubMed  Google Scholar 

  • Coulombe PA, Kopan R, Fuchs E (1989) Expression of keratin K14 in the epidermis and hair follicle: insights into complex programs of differentiation. J Cell Biol 109:2295–2312

    Article  CAS  PubMed  Google Scholar 

  • De Wolff-Peeters C, Marien K, Mebis J, Desmet V (1980) A cutaneous APUDoma or Merkel cell tumor? A morphologically recognizable tumor with a biological and histological malignant aspect in contrast with its clinical behavior. Cancer 46:1810–1816

    Article  PubMed  Google Scholar 

  • Dittel BN, McCarthy JB, Wayner EA, LeBien TW (1993) Regulation of human B-cell precursor adhesion to bone marrow stromal cells by cytokines that exert opposing effects on the expression of vascular cell adhesion molecule-1 (VCAM-1). Blood 81:2272–2282

    CAS  PubMed  Google Scholar 

  • Doucet YS, Woo SH, Ruiz ME, Owens DM (2013) The touch dome defines an epidermal niche specialized for mechanosensory signaling. Cell Rep 3:1759–1765

    Google Scholar 

  • Eispert AC, Fuchs F, Brandner JM, Houdek P, Wladykowski E, Moll I (2009) Evidence for distinct populations of human Merkel cells. Histochem Cell Biol 132:83–93

    Article  CAS  PubMed  Google Scholar 

  • Ghali L, Wong ST, Tidman N, Quinn A, Philpott MP, Leigh IM (2004) Epidermal and hair follicle progenitor cells express melanoma-associated chondroitin sulfate proteoglycan core protein. J Invest Dermatol 122:433–442

    Article  CAS  PubMed  Google Scholar 

  • Grichnik JM, Ali WN, Burch JA, Byers JD, Garcia CA, Clark RE, Shea CR (1996) KIT expression reveals a population of precursor melanocytes in human skin. J Invest Dermatol 106:967–971

    Article  CAS  PubMed  Google Scholar 

  • Heider MR, Munson M (2012) Exorcising the exocyst complex. Traffic 13:898–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen KB, Watt FM (2006) Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc Natl Acad Sci USA 103:11958–11963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen KB, Collins CA, Nascimento E, Tan DW, Frye M, Itami S, Watt FM (2009) Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 4:427–439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones PH, Watt FM (1993) Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713–724

    Article  CAS  PubMed  Google Scholar 

  • Karlsson T, Mark EB, Henriksson R, Hedman H (2008) Redistribution of LRIG proteins in psoriasis. J Invest Dermatol 128:1192–1195

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JE, Tiede S, Brinckmann J, Reinhardt DP, Meyer W, Faessler R, Paus R (2008) Immunophenotyping of the human bulge region: the quest to define useful in situ markers for human epithelial hair follicle stem cells and their niche. Exp Dermatol 17:592–609

    Article  PubMed  Google Scholar 

  • Laga AC, Lai CY, Zhan Q, Huang SJ, Velazquez EF, Yang Q, Hsu MY, Murphy GF (2010) Expression of the embryonic stem cell transcription factor SOX2 in human skin: relevance to melanocyte and merkel cell biology. Am J Pathol 176:903–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Legg J, Jensen UB, Broad S, Leigh I, Watt FM (2003) Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development 130:6049–6063

    Article  CAS  PubMed  Google Scholar 

  • Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193

    Article  CAS  PubMed  Google Scholar 

  • Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ, Lumpkin EA, Zoghbi HY (2009) Merkel cells are essential for light-touch responses. Science 324:1580–1582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maricich SM, Morrison KM, Mathes EL, Brewer BM (2012) Rodents rely on merkel cells for texture discrimination tasks. J Neurosci 32:3296–3300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medic S, Ziman M (2010) PAX3 expression in normal skin melanocytes and melanocytic lesions (naevi and melanomas). PLoS ONE 5:e9977

    Article  PubMed Central  PubMed  Google Scholar 

  • Merkel F (1875) Tastzellen und Tastkörperchen bei den Hausthieren und beim Menschen. Arch Mikrosk Anat 11:636–652

    Article  Google Scholar 

  • Metallo CM, Azarin SM, Moses LE, Ji L, de Pablo JJ, Palecek SP (2010) Human embryonic stem cell-derived keratinocytes exhibit an epidermal transcription program and undergo epithelial morphogenesis in engineered tissue constructs. Tissue Eng Part A 16:213–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Milet C, Maczkowiak F, Roche DD, Monsoro-Burq AH (2013) Pax3 and Zic1 drive induction and differentiation of multipotent, migratory, and functional neural crest in Xenopus embryos. Proc Natl Acad Sci USA 110:5528–5533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  CAS  PubMed  Google Scholar 

  • Moll I, Lane AT, Franke WW, Moll R (1990) Intraepidermal formation of Merkel cells in xenografts of human fetal skin. J Invest Dermatol 94:359–364

    Article  CAS  PubMed  Google Scholar 

  • Moll I, Kuhn C, Moll R (1995) Cytokeratin 20 is a general marker of cutaneous Merkel cells while certain neuronal proteins are absent. J Invest Dermatol 104:910–915

    Article  CAS  PubMed  Google Scholar 

  • Moll I, Paus R, Moll R (1996) Merkel cells in mouse skin: intermediate filament pattern, localization, and hair cycle-dependent density. J Invest Dermatol 106:281–286

    Article  CAS  PubMed  Google Scholar 

  • Moll I, Roessler M, Brandner JM, Eispert AC, Houdek P, Moll R (2005) Human Merkel cells–aspects of cell biology, distribution and functions. Eur J Cell Biol 84:259–271

    Article  CAS  PubMed  Google Scholar 

  • Morrison KM, Miesegaes GR, Lumpkin EA, Maricich SM (2009) Mammalian Merkel cells are descended from the epidermal lineage. Dev Biol 336:76–83

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Narisawa Y, Hashimoto K, Kohda H (1994) Merkel cells of the terminal hair follicle of the adult human scalp. J Invest Dermatol 102:506–510

    Article  CAS  PubMed  Google Scholar 

  • Nonaka D, Chiriboga L, Rubin BP (2008) Sox10: a pan-schwannian and melanocytic marker. Am J Surg Pathol 32:1291–1298

    Article  PubMed  Google Scholar 

  • Okubo T, Clark C, Hogan BL (2009) Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells 27:442–450

    Article  CAS  PubMed  Google Scholar 

  • Pasche F, Merot Y, Carraux P, Saurat JH (1990) Relationship between Merkel cells and nerve endings during embryogenesis in the mouse epidermis. J Invest Dermatol 95:247–251

    Article  CAS  PubMed  Google Scholar 

  • Pellegrini G, Dellambra E, Golisano O, Martinelli E, Fantozzi I, Bondanza S, Ponzin D, McKeon F, De Luca M (2001) p63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 98:3156–3161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters EM, Stieglitz MG, Liezman C, Overall RW, Nakamura M, Hagen E, Klapp BF, Arck P, Paus R (2006) p75 Neurotrophin receptor-mediated signaling promotes human hair follicle regression (Catagen). Am J Pathol 168:221–234

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pincelli C, Marconi A (2010) Keratinocyte stem cells: friends and foes. J Cell Physiol 225:310–315

    Article  CAS  PubMed  Google Scholar 

  • Pincelli C, Sevignani C, Manfredini R, Grande A, Fantini F, Bracci-Laudiero L, Aloe L, Ferrari S, Cossarizza A, Giannetti A (1994) Expression and function of nerve growth factor and nerve growth factor receptor on cultured keratinocytes. J Invest Dermatol 103:13–18

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro A, Balasubramanian S, Hughes D, Vargo S, Powell EM, Leach JB (2013) beta1-Integrin cytoskeletal signaling regulates sensory neuron response to matrix dimensionality. Neuroscience 248C:67–78

    Article  CAS  PubMed  Google Scholar 

  • Shakhova O, Sommer L (2010) Neural crest-derived stem cells. StemBook [Internet]. Harvard Stem Cell Institute, Cambridge, MA. http://www.ncbi.nlm.nih.gov/books/NBK44752/pdf/Neural_crest-derived_stem_cells.pdf

  • Sibley RK, Rosai J, Foucar E, Dehner LP, Bosl G (1980) Neuroendocrine (Merkel cell) carcinoma of the skin. A histologic and ultrastructural study of two cases. Am J Surg Pathol 4:211–221

    Article  CAS  PubMed  Google Scholar 

  • Siebzehnrubl FA, Reynolds BA, Vescovi A, Steindler DA, Deleyrolle LP (2011) The origins of glioma: E Pluribus Unum? Glia 59:1135–1147

    Article  CAS  PubMed  Google Scholar 

  • Silver DJ, Steindler DA (2009) Common astrocytic programs during brain development, injury and cancer. Trends Neurosci 32:303–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szeder V, Grim M, Halata Z, Sieber-Blum M (2003) Neural crest origin of mammalian Merkel cells. Dev Biol 253:258–263

    Article  CAS  PubMed  Google Scholar 

  • Tachibana T, Nawa T (1980) Merkel cell differentiation in the labial mucous epithelium of the rabbit. J Anat 131:145–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanemura A, Nagasawa T, Inui S, Itami S (2005) LRIG-1 provides a novel prognostic predictor in squamous cell carcinoma of the skin: immunohistochemical analysis for 38 cases. Dermatol Surg 31:423–430

    Article  CAS  PubMed  Google Scholar 

  • Tilling T, Moll I (2012) Which are the cells of origin in merkel cell carcinoma? J Skin Cancer 2012:680410

    Article  PubMed Central  PubMed  Google Scholar 

  • Troy TC, Arabzadeh A, Turksen K (2011) Re-assessing K15 as an epidermal stem cell marker. Stem Cell Rev 7:927–934

    Article  CAS  PubMed  Google Scholar 

  • Van Keymeulen A, Mascre G, Yousseff KK, Harel I, Michaux C, De Geest N, Szpalski C, Achouri Y, Bloch W, Hassan BA, Blanpain C (2009) Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol 187:91–100

    Article  PubMed Central  PubMed  Google Scholar 

  • Vockel M, Breitenbach U, Kreienkamp HJ, Brandner JM (2010) Somatostatin regulates tight junction function and composition in human keratinocytes. Exp Dermatol 19:888–894

    Article  CAS  PubMed  Google Scholar 

  • von Bohlen und Halbach O (2007) Immunohistological markers for staging neurogenesis in adult hippocampus. Cell Tissue Res 329:409–420

  • Waseem A, Dogan B, Tidman N, Alam Y, Purkis P, Jackson S, Lalli A, Machesney M, Leigh IM (1999) Keratin 15 expression in stratified epithelia: downregulation in activated keratinocytes. J Invest Dermatol 112:362–369

    Article  CAS  PubMed  Google Scholar 

  • Wickström SA, Fässler R (2011) Regulation of membrane traffic by integrin signaling. Trends Cell Biol 21:266–273

    Article  PubMed  Google Scholar 

  • Wong CE, Paratore C, Dours-Zimmermann MT, Rochat A, Pietri T, Suter U, Zimmermann DR, Dufour S, Thiery JP, Meijer D, Beermann F, Barrandon Y, Sommer L (2006) Neural crest-derived cells with stem cell features can be traced back to multiple lineages in the adult skin. J Cell Biol 175:1005–1015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woo SH, Stumpfova M, Jensen UB, Lumpkin EA, Owens DM (2010) Identification of epidermal progenitors for the Merkel cell lineage. Development 137:3965–3971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F (1998) p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2:305–316

    Article  CAS  PubMed  Google Scholar 

  • Zabierowski SE, Fukunaga-Kalabis M, Li L, Herlyn M (2011) Dermis-derived stem cells: a source of epidermal melanocytes and melanoma? Pigment Cell Melanoma Res 24:422–429

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Satoshi Itami (Osaka) for kindly providing anti-LRIG1 antibodies. The Pax3 monoclonal antibody, developed by C.P. Ordahl, as well as the P5D2 monoclonal antibody against β1 integrin, developed by E.A. Wayner, were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biological Sciences, Iowa City, IA 52242. We would also like to thank Dr. Sandra Medic (Perth, Australia) for helpful advice on Pax3 immunostainings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tilling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilling, T., Wladykowski, E., Failla, A.V. et al. Immunohistochemical analyses point to epidermal origin of human Merkel cells. Histochem Cell Biol 141, 407–421 (2014). https://doi.org/10.1007/s00418-013-1168-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-013-1168-8

Keywords

Navigation