Skip to main content

Advertisement

Log in

Hypothyroidism reduces mammary tumor progression via Β-catenin-activated intrinsic apoptotic pathway in rats

  • Original Paper
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

Experimental hypothyroidism retards mammary carcinogenesis promoting apoptosis of tumor cells. β-catenin plays a critical role in cell adhesion and intracellular signaling pathways conditioning the prognosis of breast cancer. However, the mechanistic connections associated with the expression of β-catenin in thyroid status and breast cancer are not known. Therefore, we studied the relationship between the expression and localization of β-catenin and apoptosis in mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) in hypothyroid (Hypot) and euthyroid (EUT) rats. Female Sprague Dawley rats were treated with a dose of DMBA (15 mg/rat) at 55 days of age and were then divided into two groups: HypoT (0.01% 6-N-propyl-2-thiouracil in drinking water, n = 54) and EUT (untreated control, n = 43). Latency, incidence and progression of tumors were determined. At sacrifice, tumors were obtained for immunohistological studies and Western Blot. The latency was longer (p < 0.05), the incidence was lower (p < 0.0001) and tumor growth was slower (p < 0.01) in HypoT rats compared to EUT. The expression of Bax, cleaved caspase-9 and caspase-3 was significantly higher in tumors of HypoT than in EUT (p < 0.05) indicating the activation of the intrinsic pathway. In this group, β-catenin was expressed in the plasma membrane and with less intensity, while its expression was nuclear and with greater intensity in the EUT (p < 0.05). Moreover, the expression of survivin was reduced in tumors of HypoT rats (p < 0.05). In conclusion, decreased expression of β-catenin and its normal location in membrane of mammary tumors are associated with augmented apoptosis via activation of the intrinsic pathway in HypoT rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed Y, Hayashi S, Levine A, Wieschaus E (1998) Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell 93:1171–1182

    Article  CAS  PubMed  Google Scholar 

  • Altieri DC (2001) The molecular basis and potential role of survivin in cancer diagnosis and therapy. Trends Mol Med 7:542–547

    Article  CAS  PubMed  Google Scholar 

  • Altieri DC (2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22: 8581–8589

    Article  CAS  PubMed  Google Scholar 

  • Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    Article  CAS  PubMed  Google Scholar 

  • American Cancer Society (2016) Cancer facts and figures 2016. GAAmerican Cancer Society, Atlanta

    Google Scholar 

  • Arend RC, Londono-Joshi AI, Straughn JM Jr, Buchsbaum DJ (2013) The Wnt/beta-catenin pathway in ovarian cancer: a review. Gynecol Oncol 131:772–779

    Article  CAS  PubMed  Google Scholar 

  • Banerjee S, Uppal T, Strahan R, Dabral P, Verma SC (2016) The Modulation of apoptotic pathways by gammaherpesviruses. Front Microbiol 7: 585

    PubMed  PubMed Central  Google Scholar 

  • Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW (2008) Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol 6:e147

    Article  PubMed  PubMed Central  Google Scholar 

  • Brancolini C, Lazarevic D, Rodriguez J, Schneider C (1997) Dismantling cell–cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of beta-catenin. J Cell Biol 139:759–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinton LA, Hoffman DA, Hoover R, Fraumeni JF Jr (1984) Relationship of thyroid disease and use of thyroid supplements to breast cancer risk. J Chronic Dis 37:877–893

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, Kitajewski J, Wang CY (2001) Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol 152:87–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chera S, Ghila L, Dobretz K, Wenger Y, Bauer C, Buzgariu W, Martinou JC, Galliot B (2009) Apoptotic cells provide an unexpected source of Wnt3 signaling to drive hydra head regeneration. Dev Cell 17:279–289

    Article  CAS  PubMed  Google Scholar 

  • Cheung CH, Huang CC, Tsai FY, Lee JY, Cheng SM, Chang YC, Huang YC, Chen SH, Chang JY (2013) Survivin—biology and potential as a therapeutic target in oncology. Onco Targets Ther 6: 1453–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clevers H, Nusse R (2012) Wnt/beta-catenin signaling and disease. Cell 149:1192–1205

    Article  CAS  PubMed  Google Scholar 

  • Cristofanilli M, Yamamura Y, Kau SW, Bevers T, Strom S, Patangan M, Hsu L, Krishnamurthy S, Theriault RL, Hortobagyi GN (2005) Thyroid hormone and breast carcinoma. Primary hypothyroidism is associated with a reduced incidence of primary breast carcinoma. Cancer 103:1122–1128

    Article  CAS  PubMed  Google Scholar 

  • Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219

    Article  CAS  PubMed  Google Scholar 

  • Dong YF, Soung DY, Schwarz EM, O’Keefe RJ, Drissi H (2006) Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol 208:77–86

    Article  CAS  PubMed  Google Scholar 

  • Donmez HG, Demirezen S, Beksac MS (2016) The relationship between beta-catenin and apoptosis: a cytological and immunocytochemical examination. Tissue Cell 48:160–167

    Article  CAS  PubMed  Google Scholar 

  • Fanelli MA, Montt-Guevara M, Diblasi AM, Gago FE, Tello O, Cuello-Carrion FD, Callegari E, Bausero MA, Ciocca DR (2008) P-cadherin and beta-catenin are useful prognostic markers in breast cancer patients; beta-catenin interacts with heat shock protein Hsp27. Cell Stress Chaperones 13:207–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez JG, Rodriguez DA, Valenzuela M, Calderon C, Urzua U, Munroe D, Rosas C, Lemus D, Diaz N, Wright MC, Leyton L, Tapia JC, Quest AF (2014) Survivin expression promotes VEGF-induced tumor angiogenesis via PI3K/Akt enhanced beta-catenin/Tcf-Lef dependent transcription. Mol Cancer 13:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250–1257

    Article  CAS  PubMed  Google Scholar 

  • Fulda S (2010) Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol 2010: 370835

    PubMed  PubMed Central  Google Scholar 

  • Garg H, Suri P, Gupta JC, Talwar GP, Dubey S (2016) Survivin: a unique target for tumor therapy. Cancer Cell Int 16: 49

    Article  PubMed  PubMed Central  Google Scholar 

  • Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, Mackay A, Natrajan R, Reis-Filho JS (2011) β-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 24:209–231

    Article  CAS  PubMed  Google Scholar 

  • Guigon CJ, Zhao L, Lu C, Willingham MC, Cheng SY (2008) Regulation of beta-catenin by a novel nongenomic action of thyroid hormone beta receptor. Mol Cell Biol 28:4598–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guigon CJ, Kim DW, Zhu X, Zhao L, Cheng SY (2010) Tumor suppressor action of liganded thyroid hormone receptor beta by direct repression of beta-catenin gene expression. Endocrinology 151:5528–5536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hapon MB, Motta AB, Ezquer M, Bonafede M, Jahn GA (2007) Hypothyroidism prolongs corpus luteum function in the pregnant rat. Reproduction 133:197–205

    Article  CAS  PubMed  Google Scholar 

  • Howe LR, Subbaramaiah K, Chung WJ, Dannenberg AJ, Brown AM (1999) Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res 59:1572–1577

    CAS  PubMed  Google Scholar 

  • Huang GL, Luo Q, Rui G, Zhang W, Zhang QY, Chen QX, Shen DY (2013) Oncogenic activity of retinoic acid receptor gamma is exhibited through activation of the Akt/NF-kappaB and Wnt/beta-catenin pathways in cholangiocarcinoma. Mol Cell Biol 33:3416–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito K, Maruchi N (1975) Breast cancer in patients with Hashimoto’s thyroiditis. The Lancet 2:1119–1121

    Article  CAS  Google Scholar 

  • Jiang G, Xiao X, Zeng Y, Nagabhushanam K, Majeed M, Xiao D (2013) Targeting beta-catenin signaling to induce apoptosis in human breast cancer cells by z-guggulsterone and Gugulipid extract of ayurvedic medicine plant Commiphora mukul. BMC Complement Altern Med 13:203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ME, Howerth EW (2004) Survivin: a bifunctional inhibitor of apoptosis protein. Vet Pathol 41:599–607

    Article  CAS  PubMed  Google Scholar 

  • Kapdi CC, Wolfe JN (1976) Breast cancer. Relationship to thyroid supplements for hypothyroidism. JAMA 236:1124–1127

    Article  CAS  PubMed  Google Scholar 

  • Kimelman D, Xu W (2006) Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482–7491

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kruidering M, Evan GI (2000) Caspase-8 in apoptosis: the beginning of “the end”? IUBMB Life 50:85–90

    Article  CAS  PubMed  Google Scholar 

  • Li S, Li S, Sun Y, Li L (2014) The expression of beta-catenin in different subtypes of breast cancer and its clinical significance. Tumour Biol 35:7693–7698

    Article  CAS  PubMed  Google Scholar 

  • Li P, Guo Y, Bledsoe G, Yang Z, Chao L, Chao J (2016) Kallistatin induces breast cancer cell apoptosis and autophagy by modulating Wnt signaling and microRNA synthesis. Exp Cell Res 340:305–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Fontana CM, Sasso CV, Maselli ME, Santiano FE, Semino SN, Cuello Carrion FD, Jahn GA, Caron RW (2013) Experimental hypothyroidism increases apoptosis in dimethylbenzanthracene-induced mammary tumors. Oncol Rep 30:1651–1660

    CAS  PubMed  Google Scholar 

  • Lopez-Knowles E, Zardawi SJ, McNeil CM, Millar EK, Crea P, Musgrove EA, Sutherland RL, O’Toole SA (2010) Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer Epidemiol Biomarkers Prev 19:301–309

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Iglesias O, Garcia-Silva S, Regadera J, Aranda A (2009) Hypothyroidism enhances tumor invasiveness and metastasis development. PLoS One 4:e6428

    Article  PubMed  PubMed Central  Google Scholar 

  • Marusawa H, Matsuzawa S, Welsh K, Zou H, Armstrong R, Tamm I, Reed JC (2003) HBXIP functions as a cofactor of survivin in apoptosis suppression. EMBO J 22:2729–2740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mita AC, Mita MM, Nawrocki ST, Giles FJ (2008) Survivin: key regulator of mitosis and apoptosis and novel target for cancer therapeutics. Clin Cancer Res 14:5000–5005

    Article  CAS  PubMed  Google Scholar 

  • Moeller LC, Fuhrer D (2013) Thyroid hormone, thyroid hormone receptors, and cancer: a clinical perspective. Endocr Relat Cancer 20:R19–R29

    Article  CAS  PubMed  Google Scholar 

  • Mustacchi P, Greenspan F (1977) Thyroid supplementation for hypothyroidism. An latrogenic cause of breast cancer? JAMA 237:1446–1447

    Article  CAS  PubMed  Google Scholar 

  • Nogueira CR, Brentani MM (1996) Triiodothyronine mimics the effects of estrogen in breast cancer cell lines. J Steroid Biochem Mol Biol 59:271–279

    Article  CAS  PubMed  Google Scholar 

  • Orford K, Orford CC, Byers SW (1999) Exogenous expression of beta-catenin regulates contact inhibition, anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest. J Cell Biol 146:855–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozoren NEl Deiry WS (2003) Cell surface Death Receptor signaling in normal and cancer cells. Semin Cancer Biol 13:135–147

    Article  PubMed  Google Scholar 

  • Park JH, Kwon HY, Sohn EJ, Kim KA, Kim B, Jeong SJ, Song JH, Koo JS, Kim SH (2013) Inhibition of Wnt/beta-catenin signaling mediates ursolic acid-induced apoptosis in PC-3 prostate cancer cells. Pharmacol Rep 65:1366–1374

    Article  CAS  PubMed  Google Scholar 

  • Plateroti M, Kress E, Mori JI, Samarut J (2006) Thyroid hormone receptor alpha1 directly controls transcription of the beta-catenin gene in intestinal epithelial cells. Mol Cell Biol 26:3204–3214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani M, Read JT, Carthy JM, McDonald PC, Wong BW, Esfandiarei M, Si X, Luo Z, Luo H, Rennie PS, McManus BM (2005) Regulation of the versican promoter by the beta-catenin-T-cell factor complex in vascular smooth muscle cells. J Biol Chem 280:13019–13028

    Article  CAS  PubMed  Google Scholar 

  • Reed JC (1997) Bcl-2 family proteins: regulators of apoptosis and chemoresistance in hematologic malignancies. Semin Hematol 34:9–19

    CAS  PubMed  Google Scholar 

  • Roberts CG, Ladenson PW (2004) Hypothyroidism. Lancet 363:793–803

    Article  CAS  PubMed  Google Scholar 

  • Russo J, Russo IH (2000) Atlas and histologic classification of tumors of the rat mammary gland. J Mammary Gland Biol Neoplasia 5:187–200

    Article  CAS  PubMed  Google Scholar 

  • Shao H, Ma J, Guo T, Hu R (2014) Triptolide induces apoptosis of breast cancer cells via a mechanism associated with the Wnt/beta-catenin signaling pathway. Exp Ther Med 8: 505–508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shering SG, Zbar AP, Moriarty M, McDermott EW, O’Higgins NJ, Smyth PP (1996) Thyroid disorders and breast cancer. Eur J Cancer Prev 5:504–506

    CAS  PubMed  Google Scholar 

  • Sogaard M, Farkas DK, Ehrenstein V, Jorgensen JO, Dekkers OM, Sorensen HT (2016) Hypothyroidism and hyperthyroidism and breast cancer risk: a nationwide cohort study. Eur J Endocrinol 174:409–414

    Article  CAS  PubMed  Google Scholar 

  • Steinhusen U, Badock V, Bauer A, Behrens J, Wittman-Liebold B, Dorken B, Bommert K (2000) Apoptosis-induced cleavage of beta-catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential. J Biol Chem 275:16345–16353

    Article  CAS  PubMed  Google Scholar 

  • Tamm I, Wang Y, Sausville E, Scudiero DA, Vigna N, Oltersdorf T, Reed JC (1998) IAP-family protein survivin inhibits caspase activity and apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs. Cancer Res 58:5315–5320

    CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398:422–426

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Hijikata M, Takagi S, Takada R, Takada S, Chiba T, Shimotohno K (2002) Wnt/beta-catenin signaling suppresses apoptosis in low serum medium and induces morphologic change in rodent fibroblasts. Int J Cancer 99:681–688

    Article  CAS  PubMed  Google Scholar 

  • Valenta T, Hausmann G, Basler K (2012) The many faces and functions of beta-catenin. EMBO J 31:2714–2736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderpump MP (2011) The epidemiology of thyroid disease. Br Med Bull 99:39–51

    Article  PubMed  Google Scholar 

  • Wang Z, Zhang H, Hou J, Niu J, Ma Z, Zhao H, Liu C (2015) Clinical implications of beta-catenin protein expression in breast cancer. Int J Clin Exp Pathol 8:14989–14994

    PubMed  PubMed Central  Google Scholar 

  • Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • You Z, Saims D, Chen S, Zhang Z, Guttridge DC, Guan KL, MacDougald OA, Brown AM, Evan G, Kitajewski J, Wang CY (2002) Wnt signaling promotes oncogenic transformation by inhibiting c-Myc-induced apoptosis. J Cell Biol 157:429–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Gaspard JP, Chung DC (2001) Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res 61:6050–6054

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to Mrs. Elina Guiñazú de Di Nasso, Mrs. Paula Ginevro and Mr. Juan Rosales for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. López Fontana.

Ethics declarations

Funding

This study was funded by Instituto Nacional del Cáncer, Ministerio de Salud, Presidencia de la Nación, Argentina.

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López Fontana, C.M., Zyla, L.E., Santiano, F.E. et al. Hypothyroidism reduces mammary tumor progression via Β-catenin-activated intrinsic apoptotic pathway in rats. Histochem Cell Biol 147, 759–769 (2017). https://doi.org/10.1007/s00418-017-1544-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00418-017-1544-x

Keywords

Navigation