Skip to main content
Log in

Cardiac β-adrenergic responsiveness with exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Left ventricular performance is enhanced with chronic exercise training. Alterations in cardiomyocyte β-adrenergic responsiveness (BAR) may, in part, mediate this response. In this study, cardiac BAR and the expression of some key cardiac hypertrophic signaling molecules following 3 months of treadmill training were examined. Four-month old, female, Wistar Kyoto (WKY) rats were randomly assigned into either a sedentary (WKY-SED, n = 15) or an exercise-trained (WKY-TRD, n = 11) group. All rats were maintained on a 12-h light/dark cycle, and fed ad libitum. Exercise training consisted of motorized treadmill training at 25 m/min, 0% grade, 60 continuous minutes, 5 days/week for a period of 12 weeks. RT-PCR was used to establish basal cardiac calcineurin A, ANP, and AKT mRNA expression. In vitro cardiac BAR responsiveness was determined in Langendorff, isolated hearts. Following baseline, isoproterenol (ISO) was incrementally infused at concentrations ranging from 1 × 10−10 to 1 × 10−7 mol/L. There were no group differences for heart weight, heart to body weight ratio, calcineurin A, ANP, or AKT mRNA levels between WKY-SED and WKY-TRD. WKY-TRD showed enhanced cardiac BAR relative to WKY-SED (at ISO 1 × 10−7 mol/L; P < 0.05). Moderate intensity treadmill exercise improved cardiac BAR responsiveness to a high concentration of isoproterenol. This adaptation was independent of training-induced alterations in cardiac hypertrophy or hypertrophic marker expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barbier J, Rannou-Bekono F, Marchais J, Berthon PM, Delamarche P, Carre F (2004) Effect of training on beta1 beta2 beta3 adrenergic and M2 muscarinic receptors in rat heart. Med Sci Sports Exerc 36(6):949–954. doi:00005768-200406000-00006[pii]

    Article  PubMed  CAS  Google Scholar 

  • Barbier J, Reland S, Ville N, Rannou-Bekono F, Wong S, Carre F (2006) The effects of exercise training on myocardial adrenergic and muscarinic receptors. Clin Auton Res 16(1):61–65. doi:10.1007/s10286-006-0312-0

    Article  PubMed  Google Scholar 

  • Billman GE, Kukielka M, Kelley R, Moustafa-Bayoumi M, Altschuld RA (2006) Endurance exercise training attenuates cardiac β2-adrenoceptor responsiveness and prevents ventricular fibrillation in animals susceptible to sudden death. Am J Physiol Heart Circ Physiol 290(6):H2590–H2599. doi:10.1152/ajpheart.01220.2005

    Article  PubMed  CAS  Google Scholar 

  • Bohm M, Dorner H, Htun P, Lensche H, Platt D, Erdmann E (1993) Effects of exercise on myocardial adenylate cyclase and Gi alpha expression in senescence. Am J Physiol 264(3 Pt 2):H805–H814

    PubMed  CAS  Google Scholar 

  • Crews J, Aldinger EE (1967) Effect of chronic exercise on myocardial function. Am Heart J 74(4):536–542

    Article  PubMed  CAS  Google Scholar 

  • Davidson WR Jr, Banerjee SP, Liang CS (1986) Dobutamine-induced cardiac adaptations: comparison with exercise-trained and sedentary rats. Am J Physiol 250(5 Pt 2):H725–H730

    PubMed  CAS  Google Scholar 

  • Dohm GL, Pennington SN, Barakat H (1976) Effect of exercise training on adenyl cyclase and phosphodiesterase in skeletal muscle, heart, and liver. Biochem Med 16(2):138–142

    Article  PubMed  CAS  Google Scholar 

  • Ekblom B, Kilbom A, Malmfors T, Sigvardsson K, Svanfeldt E (1973) Sympathectomy and pharmacological blockade in trained rats. Acta Physiol Scand 89(2):283–285

    Article  PubMed  CAS  Google Scholar 

  • Holycross BJ, Kukielka M, Nishijima Y, Altschuld RA, Carnes CA, Billman GE (2007) Exercise training normalizes beta-adrenoceptor expression in dogs susceptible to ventricular fibrillation. Am J Physiol Heart Circ Physiol 293(5):H2702–H2709. doi:10.1152/ajpheart.00763.2007

    Article  PubMed  CAS  Google Scholar 

  • Hopkins MG, Spina RJ, Ehsani AA (1996) Enhanced beta-adrenergic-mediated cardiovascular responses in endurance athletes. J Appl Physiol 80(2):516–521

    PubMed  CAS  Google Scholar 

  • Houle MS, Altschuld RA, Billman GE (2001) Enhanced in vivo and in vitro contractile responses to beta(2)-adrenergic receptor stimulation in dogs susceptible to lethal arrhythmias. J Appl Physiol 91(4):1627–1637

    PubMed  CAS  Google Scholar 

  • Kolwicz SC, Kubo H, MacDonnell SM, Houser SR, Libonati JR (2007) Effects of forskolin on inotropic performance and phospholamban phosphorylation in exercise-trained hypertensive myocardium. J Appl Physiol 102(2):628–633. doi:10.1152/japplphysiol.00449.2006

    Article  PubMed  CAS  Google Scholar 

  • Leosco D, Rengo G, Iaccarino G, Filippelli A, Lymperopoulos A, Zincarelli C, Fortunato F, Golino L, Marchese M, Esposito G, Rapacciuolo A, Rinaldi B, Ferrara N, Koch WJ, Rengo F (2007) Exercise training and beta-blocker treatment ameliorate age-dependent impairment of beta-adrenergic receptor signaling and enhance cardiac responsiveness to adrenergic stimulation. Am J Physiol Heart Circ Physiol 293(3):H1596–H1603. doi:10.1152/ajpheart.00308.2007

    Article  PubMed  CAS  Google Scholar 

  • Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, Zincarelli C, Sanzari E, Ciccarelli M, Galasso G, Altobelli GG, Conti V, Matrone G, Cimini V, Ferrara N, Filippelli A, Koch WJ, Rengo F (2008) Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res 78(2):385–394. doi:10.1093/cvr/cvm109

    Article  PubMed  CAS  Google Scholar 

  • MacDonnell SM, Kubo H, Crabbe DL, Renna BF, Reger PO, Mohara J, Smithwick LA, Koch WJ, Houser SR, Libonati JR (2005) Improved myocardial beta-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation 111(25):3420–3428. doi:10.1161/CIRCULATIONAHA.104.505784

    Article  PubMed  CAS  Google Scholar 

  • MacDonnell SM, Kubo H, Harris DM, Chen X, Berretta R, Barbe MF, Kolwicz S, Reger PO, Eckhart A, Renna BF, Koch WJ, Houser SR, Libonati JR (2007) Calcineurin inhibition normalizes beta-adrenergic responsiveness in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol 293(5):H3122–H3129. doi:10.1152/ajpheart.00687.2007

    Article  PubMed  CAS  Google Scholar 

  • Mazzeo RS, Podolin DA, Henry V (1995) Effects of age and endurance training on beta-adrenergic receptor characteristics in Fischer 344 rats. Mech Ageing Dev 84(2):157–169. doi:0047-6374(95)01643-0[pii]

    Article  PubMed  CAS  Google Scholar 

  • Mole PA (1978) Increased contractile potential of papillary muscles from exercise-trained rat hearts. Am J Physiol 234(4):H421–H425

    PubMed  CAS  Google Scholar 

  • Moore RL, Riedy M, Gollnick PD (1982) Effect of training on beta-adrenergic receptor number in rat heart. J Appl Physiol 52(5):1133–1137

    PubMed  CAS  Google Scholar 

  • Nieto JL, Laviada ID, Guillen A, Haro A (1996) Adenylyl cyclase system is affected differently by endurance physical training in heart and adipose tissue. Biochem Pharmacol 51(10):1321–1329. doi:0006295296000408[pii]

    Article  PubMed  CAS  Google Scholar 

  • Nutter DO, Priest RE, Fuller EO (1981) Endurance training in the rat. I. Myocardial mechanics and biochemistry. J Appl Physiol 51(4):934–940

    PubMed  CAS  Google Scholar 

  • Paynter DE, Tipton CM, Tcheng TK (1977) Response of immunosympathectomized rats to training. J Appl Physiol 42(6):935–940

    PubMed  CAS  Google Scholar 

  • Plourde G, Rousseau-Migneron S, Nadeau A (1991) Beta-adrenoceptor adenylate cyclase system adaptation to physical training in rat ventricular tissue. J Appl Physiol 70(4):1633–1638

    PubMed  CAS  Google Scholar 

  • Reger PO, Barbe MF, Amin M, Renna BF, Hewston LA, MacDonnell SM, Houser SR, Libonati JR (2006) Myocardial hypoperfusion/reperfusion tolerance with exercise training in hypertension. J Appl Physiol 100(2):541–547. doi:10.1152/japplphysiol.00350.2005

    Article  PubMed  CAS  Google Scholar 

  • Roth DA, White CD, Podolin DA, Mazzeo RS (1998) Alterations in myocardial signal transduction due to aging and chronic dynamic exercise. J Appl Physiol 84(1):177–184

    PubMed  CAS  Google Scholar 

  • Saito K, Torda T, Potter WZ, Saavedra JM (1989) Characterization of β1 and β2 adrenoreceptor subtypes in the rat sinoatrial node and stellate ganglia by quantitative autoradiography. Neurosci Lett 96:35–41

    Article  PubMed  CAS  Google Scholar 

  • Spina RJ, Ogawa T, Coggan AR, Holloszy JO, Ehsani AA (1992) Exercise training improves left ventricular contractile response to beta-adrenergic agonist. J Appl Physiol 72(1):307–311

    PubMed  CAS  Google Scholar 

  • Spina RJ, Turner MJ, Ehsani AA (1998) Beta-adrenergic-mediated improvement in left ventricular function by exercise training in older men. Am J Physiol 274(2 Pt 2):H397–H404

    PubMed  CAS  Google Scholar 

  • Spina RJ, Rashid S, Davila-Roman VG, Ehsani AA (2000) Adaptations in beta-adrenergic cardiovascular responses to training in older women. J Appl Physiol 89(6):2300–2305

    PubMed  CAS  Google Scholar 

  • Stones R, Natali A, Billeter R, Harrison S, White E (2008) Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes. Exp Physiol 93(9):1065–1075. doi:10.1113/expphysiol.2008.042598

    Article  PubMed  Google Scholar 

  • Suman OE, Hasten D, Turner MJ, Rinder MR, Spina RJ, Ehsani AA (2000) Enhanced inotropic response to dobutamine in strength-trained subjects with left ventricular hypertrophy. J Appl Physiol 88(2):534–539

    PubMed  CAS  Google Scholar 

  • Takeda N, Dominiak P, Turck D, Rupp H, Jacob R (1985) The influence of endurance training on mechanical catecholamine responsiveness, beta-adrenoceptor density and myosin isoenzyme pattern of rat ventricular myocardium. Basic Res Cardiol 80(1):88–99

    Article  PubMed  CAS  Google Scholar 

  • Vatner SF, Vatner DE, Homcy CJ (2000) beta-adrenergic receptor signaling: an acute compensatory adjustment-inappropriate for the chronic stress of heart failure? Insights from Gsalpha overexpression and other genetically engineered animal models. Circ Res 86(5):502–506

    PubMed  CAS  Google Scholar 

  • Werle EO, Strobel G, Weicker H (1990) Decrease in rat cardiac beta 1- and beta 2-adrenoceptors by training and endurance exercise. Life Sci 46(1):9–17

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work Funded by American Heart Association Beginning Grant in Aid (JRL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Libonati.

Additional information

Communicated by Keith Phillip George.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libonati, J.R., MacDonnell, S.M. Cardiac β-adrenergic responsiveness with exercise. Eur J Appl Physiol 111, 2735–2741 (2011). https://doi.org/10.1007/s00421-011-1909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-1909-0

Keywords

Navigation