Skip to main content
Log in

The Plasmodium falciparum-induced anion channel of human erythrocytes is an ATP-release pathway

  • Ion Channels, Receptors and Transporters
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Infection with the malaria parasite Plasmodium falciparum induces osmolyte and anion channels in the host erythrocyte membrane involving ATP release and autocrine purinergic signaling. P. falciparum-parasitized but not unstimulated uninfected erythrocytes released ATP in a 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB; 7 µM)-sensitive and serum album (SA; 0.5% w/v)-stimulated manner. Since Plasmodium infection of human erythrocytes induces SA-dependent outwardly (OR) and SA-independent inwardly rectifying (IR) anion conductances, we tested whether the infection-induced OR channels directly generate an ATP release pathway. P. falciparum-parasitized erythrocytes were recorded in whole-cell mode with either Cl or ATP as the only anion in the bath or pipette. In parasitized cells with predominant OR activity, replacement of bath NaCl by Na–ATP (NMDG–Cl pipette solution) shifted the current reversal potential (V rev) from −2 ± 1 to +51 ± 3 mV (n = 15). In cells with predominant IR activity, in contrast, the same maneuver induced a shift of V rev to significantly larger (p ≤ 0.05, two-tailed t test) values (from −3 ± 1 to +66 ± 8 mV; n = 5) and an almost complete inhibition of outward current. The anion channel blocker NPPB reversibly decreased the ATP-generated OR currents from 1.1 ± 0.1 nS to 0.2 ± 0.05 nS and further shifted V rev to +87 ± 7 mV (n = 12). The NPPB-sensitive fraction of the OR reversed at +48 ± 4 mV suggesting a relative permeability of P ATP/P Cl ≈ 0.01. Together, these data raise the possibility that the OR might be the electrophysiological correlate of an erythrocyte ATP release pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barry PH, Lynch JW (1991) Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol 121:101–117

    Article  PubMed  CAS  Google Scholar 

  2. Bencic DC, Yates TJ, Ingermann RL (1997) Ecto-ATPase activity of vertebrate blood cells. Physiol Zool 70:621–630

    PubMed  CAS  Google Scholar 

  3. Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res 26:40–47

    Article  PubMed  CAS  Google Scholar 

  4. Bouyer G, Egee S, Thomas SL (2006) Three types of spontaneously active anionic channels in malaria-infected human red blood cells. Blood Cells Mol Dis 36:248–254

    Article  PubMed  CAS  Google Scholar 

  5. Bouyer G, Egee S, Thomas SL (2007) Toward a unifying model of malaria-induced channel activity. Proc Natl Acad Sci USA 104:11044–11049

    Article  PubMed  CAS  Google Scholar 

  6. Braunstein GM, Roman RM, Clancy JP, Kudlow BA, Taylor AL, Shylonsky VG, Jovov B, Peter K, Jilling T, Ismailov II, Benos DJ, Schwiebert LM, Fitz JG, Schwiebert EM (2001) Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J Biol Chem 276:6621–6630

    Article  PubMed  CAS  Google Scholar 

  7. Decherf G, Bouyer G, Egee S, Thomas SL (2007) Chloride channels in normal and cystic fibrosis human erythrocyte membrane. Blood Cells Mol Dis 39:24–34

    Article  PubMed  CAS  Google Scholar 

  8. Decherf G, Egee S, Staines HM, Ellory JC, Thomas SL (2004) Anionic channels in malaria-infected human red blood cells. Blood Cells Mol Dis 32:366–371

    Article  PubMed  CAS  Google Scholar 

  9. Desai SA, Bezrukov SM, Zimmerberg J (2000) A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 406:1001–1005

    Article  PubMed  CAS  Google Scholar 

  10. Dietrich HH, Ellsworth ML, Sprague RS, Dacey RG Jr (2000) Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol 278:H1294–H1298

    CAS  Google Scholar 

  11. Duranton C, Huber S, Tanneur V, Lang K, Brand V, Sandu C, Lang F (2003) Electrophysiological properties of the Plasmodium falciparum-induced cation conductance of human erythrocytes. Cell Physiol Biochem 13:189–198

    Article  PubMed  CAS  Google Scholar 

  12. Duranton C, Huber SM, Lang F (2002) Oxidation induces a Cl-dependent cation conductance in human red blood cells. J Physiol 539:847–855

    Article  PubMed  CAS  Google Scholar 

  13. Duranton C, Huber SM, Tanneur V, Brand VB, Akkaya C, Shumilina EV, Sandu CD, Lang F (2004) Organic osmolyte permeabilities of the malaria-induced anion conductances in human erythrocytes. J Gen Physiol 123:417–426

    Article  PubMed  CAS  Google Scholar 

  14. Duranton C, Tanneur V, Brand V, Sandu CD, Akkaya C, Huber SM, Lang F (2005) Permselectivity and pH-dependence of Plasmodium falciparum-induced anion currents in human erythrocytes. Pflugers Arch 450:335–344

    Article  PubMed  CAS  Google Scholar 

  15. Duranton C, Tanneur V, Lang C, Brand VB, Koka S, Kasinathan RS, Dorsch M, Hedrich HJ, Baumeister S, Lingelbach K, Lang F, Huber SM (2008) A high specificity and affinity interaction with serum albumin stimulates an anion conductance in malaria-infected erythrocytes. Cell Physiol Biochem 22 (in press)

  16. Edwards J, Sprung R, Sprague R, Spence D (2001) Chemiluminescence detection of ATP release from red blood cells upon passage through microbore tubing. Analyst 126:1257–1260

    Article  PubMed  CAS  Google Scholar 

  17. Egee S, Lapaix F, Decherf G, Staines HM, Ellory JC, Doerig D, Thomas SLY (2002) A stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium falciparum. J Physiol 542:795–801

    Article  PubMed  CAS  Google Scholar 

  18. Farias M 3rd, Gorman MW, Savage MV, Feigl EO (2005) Plasma ATP during exercise: possible role in regulation of coronary blood flow. Am J Physiol 288:H1586–H1590

    CAS  Google Scholar 

  19. Ginsburg H, Krugliak M, Eidelman O, Cabantchik ZI (1983) New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Mol Biochem Parasitol 8:177–190

    Article  PubMed  CAS  Google Scholar 

  20. Grygorczyk R, Hanrahan JW (1997) CFTR-independent ATP release from epithelial cells triggered by mechanical stimuli. Am J Physiol 272:C1058–C1066

    PubMed  CAS  Google Scholar 

  21. Grygorczyk R, Tabcharani JA, Hanrahan JW (1996) CFTR channels expressed in CHO cells do not have detectable ATP conductance. J Membr Biol 151:139–148

    Article  PubMed  CAS  Google Scholar 

  22. Huber SM, Duranton C, Henke G, Van De Sand C, Heussler V, Shumilina E, Sandu CD, Tanneur V, Brand V, Kasinathan RS, Lang KS, Kremsner PG, Hubner CA, Rust MB, Dedek K, Jentsch TJ, Lang F (2004) Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte. J Biol Chem 279:41444–41452

    Article  PubMed  CAS  Google Scholar 

  23. Huber SM, Uhlemann AC, Gamper NL, Duranton C, Kremsner PG, Lang F (2002) Plasmodium falciparum activates endogenous Cl channels of human erythrocytes by membrane oxidation. Embo J 21:22–30

    Article  PubMed  CAS  Google Scholar 

  24. Kirk K (2001) Membrane transport in the malaria-infected erythrocyte. Physiol Rev 81:495–537

    PubMed  CAS  Google Scholar 

  25. Kirk K, Horner HA (1995) In search of a selective inhibitor of the induced transport of small solutes in Plasmodium falciparum-infected erythrocytes: effects of arylaminobenzoates. Biochem J 311:761–768

    PubMed  CAS  Google Scholar 

  26. Kirk K, Horner HA, Elford BC, Ellory JC, Newbold CI (1994) Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J Biol Chem 269:3339–3347

    PubMed  CAS  Google Scholar 

  27. Knofler R, Weissbach G, Kuhlisch E (1997) Release of adenosine triphosphate by adenosine diphosphate in whole blood and in erythrocyte suspensions. Am J Hematol 56:259–265

    Article  PubMed  CAS  Google Scholar 

  28. Kutner S, Ginsburg H, Cabantchik ZI (1983) Permselectivity changes in malaria (Plasmodium falciparum) infected human red blood cell membranes. J Cell Physiol 114:245–251

    Article  PubMed  CAS  Google Scholar 

  29. Laing G, Stephenson AH, Lonigro AJ, Sprague RS (2005) Erythrocytes of humans with cystic fibrosis fail to stimulate nitric oxide synthesis in isolated rabbit lungs. Am J Physiol 288:H1580–H1585

    Google Scholar 

  30. Lew VL, Macdonald L, Ginsburg H, Krugliak M, Tiffert T (2004) Excess haemoglobin digestion by malaria parasites: a strategy to prevent premature host cell lysis. Blood Cells Mol Dis 32:353–359

    Article  PubMed  CAS  Google Scholar 

  31. Light DB, Dahlstrom PK, Gronau RT, Baumann NL (2001) Extracellular ATP activates a P2 receptor in necturus erythrocytes during hypotonic swelling. J Membr Biol 182:193–202

    Article  PubMed  CAS  Google Scholar 

  32. Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659

    Article  PubMed  CAS  Google Scholar 

  33. Mitchell CH, Carre DA, McGlinn AM, Stone RA, Civan MM (1998) A release mechanism for stored ATP in ocular ciliary epithelial cells. Proc Natl Acad Sci USA 95:7174–7178

    Article  PubMed  CAS  Google Scholar 

  34. Olearczyk JJ, Ellsworth ML, Stephenson AH, Lonigro AJ, Sprague RS (2004) Nitric oxide inhibits ATP release from erythrocytes. J Pharmacol Exp Ther 309:1079–1084

    Article  PubMed  CAS  Google Scholar 

  35. Olearczyk JJ, Stephenson AH, Lonigro AJ, Sprague RS (2001) Receptor-mediated activation of the heterotrimeric G-protein Gs results in ATP release from erythrocytes. Med Sci Monit 7:669–674

    PubMed  CAS  Google Scholar 

  36. Olearczyk JJ, Stephenson AH, Lonigro AJ, Sprague RS (2004) NO inhibits signal transduction pathway for ATP release from erythrocytes via its action on heterotrimeric G protein Gi. Am J Physiol 287:H748–H754

    CAS  Google Scholar 

  37. Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063–1073

    Article  PubMed  CAS  Google Scholar 

  38. Sprague R, Bowles E, Stumpf M, Ricketts G, Freidman A, Hou WH, Stephenson A, Lonigro A (2005) Rabbit erythrocytes possess adenylyl cyclase type II that is activated by the heterotrimeric G proteins Gs and Gi. Pharmacol Rep 57(Suppl):222–228

    PubMed  Google Scholar 

  39. Sprague RS, Ellsworth ML, Stephenson AH, Kleinhenz ME, Lonigro AJ (1998) Deformation-induced ATP release from red blood cells requires CFTR activity. Am J Physiol 275:H1726–H1732

    PubMed  CAS  Google Scholar 

  40. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (1996) ATP: the red blood cell link to NO and local control of the pulmonary circulation. Am J Physiol 271:H2717–H2722

    PubMed  CAS  Google Scholar 

  41. Sprague RS, Ellsworth ML, Stephenson AH, Lonigro AJ (2001) Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am J Physiol 281:C1158–C1164

    CAS  Google Scholar 

  42. Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ (2003) Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol 285:H693–H700

    CAS  Google Scholar 

  43. Sprague RS, Stephenson AH, Dimmitt RA, Weintraub NL, Branch CA, McMurdo L, Lonigro AJ (1995) Effect of L-NAME on pressure-flow relationships in isolated rabbit lungs: role of red blood cells. Am J Physiol 269:H1941–H1948

    PubMed  CAS  Google Scholar 

  44. Sprague RS, Stephenson AH, Ellsworth ML, Keller C, Lonigro AJ (2001) Impaired release of ATP from red blood cells of humans with primary pulmonary hypertension. Exp Biol Med (Maywood) 226:434–439

    CAS  Google Scholar 

  45. Sprung R, Sprague R, Spence D (2002) Determination of ATP release from erythrocytes using microbore tubing as a model of resistance vessels in vivo. Anal Chem 74:2274–2278

    Article  PubMed  CAS  Google Scholar 

  46. Staines HM, Alkhalil A, Allen RJ, De Jonge HR, Derbyshire E, Egee S, Ginsburg H, Hill DA, Huber SM, Kirk K, Lang F, Lisk G, Oteng E, Pillai AD, Rayavara K, Rouhani S, Saliba KJ, Shen C, Solomon T, Thomas SL, Verloo P, Desai SA (2007) Electrophysiological studies of malaria parasite-infected erythrocytes: current status. Int J Parasitol 37:475–482

    Article  PubMed  CAS  Google Scholar 

  47. Staines HM, Ashmore S, Felgate H, Moore J, Powell T, Ellory JC (2006) Solute transport via the new permeability pathways in Plasmodium falciparum-infected human red blood cells is not consistent with a simple single channel model. Blood 108:3187–3194

    Article  PubMed  CAS  Google Scholar 

  48. Staines HM, Powell T, Ellory JC, Egee S, Lapaix F, Decherf G, Thomas SL, Duranton C, Lang F, Huber SM (2003) Modulation of whole-cell currents in Plasmodium falciparum-infected human red blood cells by holding potential and serum. J Physiol 552:177–183

    Article  PubMed  CAS  Google Scholar 

  49. Staines HM, Rae C, Kirk K (2000) Increased permeability of the malaria-infected erythrocyte to organic cations. Biochim Biophys Acta 1463:88–98

    Article  PubMed  CAS  Google Scholar 

  50. Sugita M, Yue Y, Foskett JK (1998) CFTR Cl channel and CFTR-associated ATP channel: distinct pores regulated by common gates. Embo J 17:898–908

    Article  PubMed  CAS  Google Scholar 

  51. Tanneur V, Duranton C, Brand VB, Sandu CD, Akkaya C, Kasinathan RS, Gachet C, Sluyter R, Barden JA, Wiley JS, Lang F, Huber SM (2006) Purinoceptors are involved in the induction of an osmolyte permeability in malaria-infected and oxidized human erythrocytes. Faseb J 20:133–135

    PubMed  CAS  Google Scholar 

  52. Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312:924–927

    Article  PubMed  CAS  Google Scholar 

  53. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193:673–675

    Article  PubMed  CAS  Google Scholar 

  54. Trams EG (1980) A proposal for the role of ecto-enzymes and adenylates in traumatic shock. J Theor Biol 87:609–621

    Article  PubMed  CAS  Google Scholar 

  55. Verloo P, Kocken CH, Van der Wel A, Tilly BC, Hogema BM, Sinaasappel M, Thomas AW, De Jonge HR (2004) Plasmodium falciparum-activated chloride channels are defective in erythrocytes from cystic fibrosis patients. J Biol Chem 279:10316–10322

    Article  PubMed  CAS  Google Scholar 

  56. Wang L, Olivecrona G, Gotberg M, Olsson ML, Winzell MS, Erlinge D (2005) ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res 96:189–196

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft Hu781/4–3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan M. Huber.

Additional information

Canan Akkaya and Ekaterina Shumilina contributed equally to this work and, thus, share first authorship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akkaya, C., Shumilina, E., Bobballa, D. et al. The Plasmodium falciparum-induced anion channel of human erythrocytes is an ATP-release pathway. Pflugers Arch - Eur J Physiol 457, 1035–1047 (2009). https://doi.org/10.1007/s00424-008-0572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-008-0572-8

Keywords

Navigation