Skip to main content

Advertisement

Log in

Green tea extract protects rats against myocardial infarction associated with left anterior descending coronary artery ligation

  • Cardiovascular Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

There is increasing evidence that green tea polyphenols can protect against myocardial damage. Recently, we showed that they bind to cardiac troponin C and alter myofilament Ca2+ sensitivity in cardiac muscle. In the present study, we examined whether green tea extract (GTE) could prevent the progressive remodeling seen in ischemic myocardium and improve cardiac function by modulation of the contractile apparatus utilizing a myocardial infarction (MI) model in the rat involving ligation of the left anterior descending branch. Using this model, severe myocardial injury was found, including altered cardiac performance and the appearance of extensive fibrosis and left ventricular (LV) enlargement. Supplementation with 400 mg/kg/day of GTE for 4, 18, or 46 days had beneficial effects in preventing the hemodynamic changes. Histopathological studies showed that GTE attenuated the progressive remodeling seen after myocardial injury. Echocardiography confirmed that GTE prevented LV enlargement and improved LV performance in post-MI rats. In addition, we showed that GTE supplementation for 18 or 46 days increased the myofilament Ca2+ sensitivity of the ischemic myocardium in post-MI rats. These results validate the novel action of green tea polyphenols in protecting against myocardial damage and enhancing cardiac contractility by modulating myofilament Ca2+ sensitivity in post-MI rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aleshin A, Ananthakrishnan R, Li Q, Rosario R, Lu Y, Qu W, Song F, Bakr S, Szabolcs M, D'Agati V, Liu R, Homma S, Schmidt AM, Yan SF, Ramasamy R (2008) RAGE modulates myocardial injury consequent to LAD infarction via impact on JNK and STAT signaling in a murine model. Am J Physiol 294:H1823–H1832

    CAS  Google Scholar 

  2. Aneja R, Hake PW, Burroughs TJ, Denenberg AG, Wong HR, Zingarelli B (2004) Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats. Mol Med 10:55–62

    Article  PubMed  CAS  Google Scholar 

  3. Biesiadecki BJ, Kobayashi T, Walker JS, John Solaro R, de Tombe PP (2007) The troponin C G159D mutation blunts myofilament desensitization induced by troponin I Ser23/24 phosphorylation. Circ Res 100:1486–1493

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Lee MJ, Li H, Yang CS (1997) Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos 25:1045–1050

    PubMed  CAS  Google Scholar 

  5. Collins AR, Schnee J, Wang W, Kim S, Fishbein MC, Bruemmer D, Law RE, Nicholas S, Ross RS, Hsueh WA (2004) Osteopontin modulates angiotensin II-induced fibrosis in the intact murine heart. J Am Coll Cardiol 43:1698–1705

    Article  PubMed  CAS  Google Scholar 

  6. Dargis R, Pearlstone JR, Barrette-Ng I, Edwards H, Smillie LB (2002) Single mutation (A162H) in human cardiac troponin I corrects acid pH sensitivity of Ca2+-regulated actomyosin S1 ATPase. J Biol Chem 277:34662–34665

    Article  PubMed  CAS  Google Scholar 

  7. Day SM, Westfall MV, Metzger JM (2007) Tuning cardiac performance in ischemic heart disease and failure by modulating myofilament function. J Mol Med 85:911–921

    Article  PubMed  Google Scholar 

  8. Day SM, Westfall MV, Fomicheva EV, Hoyer K, Yasuda S, La Cross NC, D'Alecy LG, Ingwall JS, Metzger JM (2006) Histidine button engineered into cardiac troponin I protects the ischemic and failing heart. Nat Med 12:181–189

    Article  PubMed  CAS  Google Scholar 

  9. Dreger H, Lorenz M, Kehrer A, Baumann G, Stangl K, Stangl V (2008) Characteristics of catechin- and theaflavin-mediated cardioprotection. Exp Biol Med (Maywood) 233:427–433

    Article  CAS  Google Scholar 

  10. Fishbein MC, Maclean D, Maroko PR (1978) Experimental myocardial infarction in the rat: qualitative and quantitative changes during pathologic evolution. Am J Pathol 90:57–70

    PubMed  CAS  Google Scholar 

  11. Gao XM, Dart AM, Dewar E, Jennings G, Du XJ (2000) Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res 45:330–338

    Article  PubMed  CAS  Google Scholar 

  12. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    PubMed  CAS  Google Scholar 

  13. Hao J, Kim CH, Ha TS, Ahn HY (2007) Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J Vet Sci 8:121–129

    Article  PubMed  Google Scholar 

  14. Hirai M, Hotta Y, Ishikawa N, Wakida Y, Fukuzawa Y, Isobe F, Nakano A, Chiba T, Kawamura N (2007) Protective effects of EGCg or GCg, a green tea catechin epimer, against postischemic myocardial dysfunction in guinea-pig hearts. Life Sci 80:1020–1032

    Article  PubMed  CAS  Google Scholar 

  15. Hirano R, Momiyama Y, Takahashi R, Taniguchi H, Kondo K, Nakamura H, Ohusuzu F (2002) Comparison of green tea intake in Japanese patients with and without angiographic coronary artery disease. Am J Cardio 90:1150–1153

    Article  Google Scholar 

  16. Hotta Y, Huang L, Muto T, Yajima M, Miyazeki K, Ishikawa N, Fukuzawa Y, Wakida Y, Tushima H, Ando H, Nonogaki T (2006) Positive inotropic effect of purified green tea catechin derivative in guinea pig hearts: the measurements of cellular Ca2+ and nitric oxide release. Eur J Pharmacol 552:123–130

    Article  PubMed  CAS  Google Scholar 

  17. Jochmann N, Baumann G, Stangl V (2008) Green tea and cardiovascular disease: from molecular targets towards human health. Curr Opin Clin Nutr Metab Care 11:758–765

    Article  PubMed  CAS  Google Scholar 

  18. Klocke R, Tian W, Kuhlmann MT, Nikol S (2007) Surgical animal models of heart failure related to coronary heart disease. Cardiovasc Res 74:29–38

    Article  PubMed  CAS  Google Scholar 

  19. Kobayashi T, Solaro RJ (2005) Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu Rev Physiol 67:39–67

    Article  PubMed  CAS  Google Scholar 

  20. Kuriyama S (2008) The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr 138:1548S–1553S

    PubMed  CAS  Google Scholar 

  21. Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA 296:1255–1265

    Article  PubMed  CAS  Google Scholar 

  22. Li D, Yang C, Chen Y (2008) Identification of a PKCε-dependent regulation of myocardial contraction by epicatechin-3-gallate. Am J Physiol 294:345–353

    Article  CAS  Google Scholar 

  23. Li G, Martin AF, Solaro RJ (2001) Localization of regions of troponin I important in deactivation of cardiac myofilaments by acidic pH. J Mol Cell Cardiol 33:1309–1320

    Article  PubMed  CAS  Google Scholar 

  24. Li P, Hofmann PA, Li B, Malhotra A, Cheng W, Sonnenblick EH, Meggs LG, Anversa P (1997) Myocardial infarction alters myofilament calcium sensitivity and mechanical behavior of myocytes. Am J Physiol 272:H360–H370

    PubMed  CAS  Google Scholar 

  25. Liou YM, Kuo SC, Hsieh SR (2008) Differential effects of a green tea-derived polyphenol (−)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca2+ sensitivity of cardiac and skeletal muscle. Pflugers Arch 456:787–800

    Article  PubMed  CAS  Google Scholar 

  26. Liou YM, Chang JCH (2004) Differential pH effect on calcium-induced conformational changes of cardiac troponin C complexed with cardiac and fast skeletal isoforms of troponin I and troponin T. J Biochem 136:683–692

    Article  PubMed  CAS  Google Scholar 

  27. Liou YM, Jiang MJ, Wu MC (2000) Altered expression of cardiac myosin isozymes associated with the malignant hyperthermia genotype in swine. Anesthesiology 93:1312–1319

    Article  PubMed  CAS  Google Scholar 

  28. Liu YH, Yang XP, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Chronic heart failure induced by coronary artery ligation in Lewis inbred rats. Am J Physiol 272:H722–H727

    PubMed  CAS  Google Scholar 

  29. Lorenz M, Hellige N, Rieder P (2008) Positive inotropic effects of epigallocatechin-3-gallate (EGCG) involve activation of Na+/H+ and Na+/Ca2+ exchangers. Eur J Heart Fail 10:439–445

    Article  PubMed  CAS  Google Scholar 

  30. Metzger JM, Westfall MV (2004) Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circ Res 94:146–158

    Article  PubMed  CAS  Google Scholar 

  31. Mukamal KJ, Maclure M, Muller JE, Sherwood JB, Mittleman MA (2002) Tea consumption and mortality after acute myocardial infarction. Circulation 105:2476–2481

    Article  PubMed  Google Scholar 

  32. Solaro RJ, Kumar P, Blanchard EM, Martin AF (1986) Differential effects of pH on calcium activation of myofilaments of adult and perinatal dog hearts. Evidence for developmental differences in thin filament regulation. Circ Res 58:721–729

    PubMed  CAS  Google Scholar 

  33. Peters U, Poole C, Arab L (2001) Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol 154:495–503

    Article  PubMed  CAS  Google Scholar 

  34. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA (1979) Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512

    PubMed  CAS  Google Scholar 

  35. Shioura KM, Geenen DL, Goldspink PH (2007) Assessment of cardiac function with the pressure–volume conductance system following myocardial infarction in mice. Am J Physiol 293:H2870–H2877

    CAS  Google Scholar 

  36. Stangl V, Dreger H, Stangl K, Lorenz M (2007) Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res 73:348–358

    Article  PubMed  CAS  Google Scholar 

  37. Stangl V, Lorenz M, Stangl K (2006) The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res 50:218–228

    Article  PubMed  CAS  Google Scholar 

  38. Stephanou A (2004) Role of STAT-1 and STAT-3 in ischaemia/reperfusion injury. J Cell Mol Med 8:519–525

    Article  PubMed  CAS  Google Scholar 

  39. Sumpio BE, Cordova AC, Berke-Schlessel DW, Qin F, Chen QH (2006) Green tea, the “Asian paradox,” and cardiovascular disease. J Am Coll Surg 202:813–825

    Article  PubMed  Google Scholar 

  40. Suzuki J, Ogawa M, Futamatsu H, Kosuge H, Sagesaka YM, Isobe M (2007) Tea catechins improve left ventricular dysfunction, suppress myocardial inflammation and fibrosis, and alter cytokine expression in rat autoimmune myocarditis. Eur J Heart Fail 9:152–159

    Article  PubMed  CAS  Google Scholar 

  41. Suzuki J, Ogawa M, Maejima Y, Isobe K, Tanaka H, Sagesaka YM, Isobe M (2007) Tea catechins attenuate chronic ventricular remodeling after myocardial ischemia in rats. J Mol Cell Cardiol 42:432–440

    Article  PubMed  CAS  Google Scholar 

  42. Tadano N, Yumoto F, Morimoto S, Nagata K, Tanokura M, Ohtsuki I. Epigallocatechin gallate, a major polyphenol in green tea, binds to cardiac troponin C and desensitizes cardiac muscle contraction to Ca2+. International Symposium Celebrating 40th Anniversary of Troponin Discovery, the 33rd NIPS Conference, Okazaki, Japan, October 25–28, 2005 (Abstract)

  43. Takagawa J, Zhang Y, Wong ML, Sievers RE, Kapasi NK, Wang Y, Yeghiazarians Y, Lee RJ, Grossman W, Springer ML (2007) Myocardial infarct size measurement in the mouse chronic infarction model: comparison of area- and length-based approaches. J Appl Physiol 102:2104–2111

    Article  PubMed  Google Scholar 

  44. Townsend PA, Scarabelli TM, Pasini E, Gitti G, Menegazzi M, Suzuki H, Knight RA, Latchman DS, Stephanou A (2004) Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J 18:1621–1623

    PubMed  CAS  Google Scholar 

  45. Westfall MV, Metzger JM (2007) Single amino acid substitutions define isoform-specific effects of troponin I on myofilament Ca2+ and pH sensitivity. J Mol Cell Cardiol 43:107–118

    Article  PubMed  CAS  Google Scholar 

  46. Westfall MV, Borton AR, Albayya FP, Metzger JM (2002) Myofilament calcium sensitivity and cardiac disease: insights from troponin I isoforms and mutants. Circ Res 91:525–531

    Article  PubMed  CAS  Google Scholar 

  47. Wolfram S (2007) Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr 26:373S–388S

    PubMed  CAS  Google Scholar 

  48. Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, Schantz SP (1998) Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 7:351–354

    PubMed  CAS  Google Scholar 

  49. Ytrehus K, Liu Y, Tsuchida A, Miura T, Liu GS, Yang XM, Herbert D, Cohen MV, Downey JM (1994) Rat and rabbit heart infarction: effects of anesthesia, perfusate, risk zone, and method of infarct sizing. Am J Physiol 267:H2383–H2390

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Science Council of Taiwan (NSC 95-2320-B-005-005) and cooperative projects between the Taichung Veterans General Hospital and the NCHU (TCVGH-NCHU 967602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Ming Liou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, SR., Tsai, DC., Chen, JY. et al. Green tea extract protects rats against myocardial infarction associated with left anterior descending coronary artery ligation. Pflugers Arch - Eur J Physiol 458, 631–642 (2009). https://doi.org/10.1007/s00424-009-0655-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-009-0655-1

Keywords

Navigation